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STATE-SPACE AEROELASTIC MODELING AND ITS APPLICATION

IN FLUTTER CALCULATION

Lu Shu-ch'uan*

(Nanching Aeronautical Institute)

ABSTRACT

In this paper, the available state-space aeroelastic models

are reviewed, and several suggestions for improvement are proposed.

A new state-space aeroelastic model is also proposed. Flutter cal-

culation is carried out on two types of wings. These examples show

that the new state-space aeroelastic model is one of high accuracy

and low order. A method is presented by which the modals can be

automatically identified and the flutter point automatically determined

during the course of flutter calculation using state-space aeroelastic

modeling.

I. INTRODUCTION

In recent years active flutter suppression has been widely studied,

and research interests have included the problem of simplifying the

control law for multiple input and multiple output systems under

various limiting conditions. It is therefore necessary to establish

aeroelastic models that are compatible with modern control theories.

The crux lies in establishing a non-steady-state aerodynamic model.

The aerodynamic forces found in the literature on flutter theory

have been derived under the conditions of simple harmonic motion.

In applying the modern control theories, however, it is necessary

to have an expression for the aerodynamic forces that is valid under

Received in May, 1982.



any given conditions of motion, and that takes the form of a rational

function. In other words, the non-steady-state aerodynamic forces

at the various dispersed points on the imaginary axis of the Laplace

complex plane need to be extended to the entire plane. Further-

more, this approximate expression should be a rational function

of the Laplace variable s. Its accuracy of fitting should be high,

and the order of the corresponding aeroelastic model should be low.

This type of rational approximation was first proposed by Jones[l),

and expanded later by several other authors [2,3,4].

Although no solid proof has been given, this method of extension

does have some significance. For, in flutter calculation, the problem

of greatest concern is that of determining the critical conditions,

under which the motion is simple harmonic motion. The error for

the points in the neighborhood of the imaginary axis (which approxi-

mately undergo simple harmonic motion) cannot be too large either.

We have reviewed various methods that are presently available,

and proposed some suggestions for improvement. We have also pro-

posed a new state-space aeroelastic model.

Because several state-space coordinates are introduced in the

state-space aeroelastic model which are not present in the original

structural model, extra roots are produced. A brief discussion

is given on their properties. The first and second derivatives

of the characteristic values with respect to velocity have been

derived in this paper, and have been used to automatically identify

modals (including the extra roots) and automatically determine the

flutter point.
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II. PRESENTLY AVAILABLE NON-STEADY-STATE AERODYNAMIC MODELS

The Laplace transform for the flutter equation of motion is

+ B,) + (K,)) (X( = q C A) (X( s)) (1)

where [X(s)] is the vector of general coordiates of the model, of

order (n,l); [Ms 1, [Bs I and [K s ] are, respectively, the mass, resistance

and rigidity matrices of the structure; s is the Laplace variable.

(A] is the matrix of the coefficients of influence of the aero-
dynamic forces, and is a function of s, where s= is the dimension-

less quantity of s. b is the half-chord length of the wing. V

is the velocity of the oncoming stream. q is the velocity pressure.

The problem at hand is thic: Given the matrix of the oefficients of

influence of the simple harmonic non-steady-state aerodynamic forces

for a set of values of k:

(A(kj))-(F(k,))+ i (G(ki)) ( I =1,2-.L

wb
where k= is the reduction frequency, find a rational approxi-

mation that can be used in the fitting.

The presently available rational approximations are:

1. Roger's approximation [2):

N
(Ei(A, =(1)r(Q) +(3 '+(2)

The resulting aeroelastic model is of order (N+2).n. In most appli-

cations [5,6], -4, i.e., the order is 6n. Usually,

ri is taken to be the N values of k within the range of the reduc-

tion frequency studied.
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2. Padd's approximation in matrix form [3,4]:

The resulting model is of order 3n.

3. Karpel's approximation [4]:

(.4)=CQ,)+(Q,)i+(Q,)i+ ED] (i(l)- CR))' (~i
(u. n) (t.rn cm.m, (m. n)

The numbers in the parentheses below the equation denote the order

of the matrices. The resulting model is of order 2n+m.

4. Indices for fitting accuracy:

In this paper, three indices are used in evaluating the fitting

accuracy.

(1) Total relative error e;

F ( -CFi, (k) +G ;j'(k,) (5)

1-1 i-i 1=1

F and G are the F and G matrices obtained in the process ofap ap

fitting. i and j are the subscripts of the elements of the matrices.

(2) Relative error of the elements cij;

For each element of the [F ap(k )1 and [G ap(k )] corresponding

4



to the L values of k there is one relative error. There are 21n 2

in all which we will not list here one by one. In fact, the error

of each element depends on the form of the approximate equation,

the manner in which each element varies with the value of k and

the relative amount of these variations. For a given set of sub-

scripts, these three contributions are of a commion nature. There-

fore, the errors of elements with the same subscripts can be super-

posed, i.e. /L'CF,~k)-,(~)
L1Y CF,(1+ ,2k) (6)

1=1

(3) Error in flutter velocity c vf

Ef V,0VI (7)

where V fois the flutter velocity in the absence of control obtained

from the data collected prior to fitting, and V f is that obtained

from the various approximate equations.

Among the above three types of errors, c reflects the total

fitting accuracy, and is the main index. After the fitting, Eij

ought to be examined to see if any important model has a large

error in the range of reduction frequency of interest. E: vf is

also just an index for reference only. It only indicates the

error of flutter velocity in the absence of control, while in

the presence of control, there may be very large variations in

flutter velocity.
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5. Comparison and Analysis:

Two examples have been computed in this paper.

Example 1 is a triangular wing with degree of freedom n=4.

The matrix [A] of aerodynamic force is computed for k=0.1,0.2,

0.25, 0.2857, 0.3333, 0.3636, 0.4, 0.5, 0.6667 and 1 using the

method given in Reference [7] for subsonic flow. The V fQ thus

obtained is 908.4 ft/sec. (The experimentally obtained value

is 924 ft/sec.) The errors obtained from the above three fitting

equations are listed Table 1.

Example 2 is a swept-back wing, with n=3. Fitting of [A]

is done for k=0.2,0.2222, 0.25, 0.2857, 0.3333, 0.4, 0.5, 0.6667

and 1. The results are shown in Table 2.

In the above examples, when using Roger's equation, we take

N=4 and r=0.2,0.4,0.6 and 0.8. When using Karpel's equation,

we take m=4 and the initial values of r to be -0.2,-0.4,-0.6 and

-0.8.

It is obvious from Tables 1 and 2 that, among the three methods,

the fitting accuracy is highest for Roger's equation. The total

error c is small, and its Eij are particularly small. However,

it has a relatively high order. The orders of the other two methods

are half as high, but their E is rather large for the second example.

In particular, the cjfor some of the elements are very large.

Cvf is small for all three methods. Although the latter two methods

have larger e, their cv remains small because of the requirements

that [A] or its imaginary part be perfectly fitted when k=kf.

The main reason for Roger's equation to have a higher fitting

accuracy is as follows. In the process of fitting, after r.i is

determined, each element in the same matrix is independently

6



determined. On the other hand, in the other two methods, the

elements in the same matrix must be determined simultaneously.

Thus, in the process of fitting, the accuracy of the larger elements

is ensured at the expense of that of the smaller elements. The

larger the extent of correlation, the larger the error.

Fitting accuracy is also affected by the method of fitting.

In the latter two methods, the special conditions of k=O and of

k fl and k f2 are utilized to establish the three relations for

the special matrices. Although the computatirn is thus simplified,

it is accompanied by a large error. Moreove uhe relation used

in the Karpel approximation to fit [R], [D), i [E] is nonlinear.

Even after many iterations, good fitting can ly be obtained

locally. This adversely affects the increas accuracy.

When carrying out flutter calculations using the above approxi-

mations, it is necessary to introduce augmented state coordinates.

This gives rise to extra roots. In our two examples, the extra

roots produced by using Roger's and Karpel's equations are stable

roots. Because no restriction is placed on eigenvalues of [R]

by Pade's matrix relation, unstable eigenvalues are produced in

both examples. These extra roots arise because of the mathematical

model of aerodynamics used, and do not exist in the actual physical

model. Therefore, they can be singled out in the computations.

(See Section V.) However, in the simulation, it must be ensured

that negative characteristic values exist.

It can be seen from the above that Roger's approximation

has the highest accuracy, and its extra roots are all stable.

However, its order is relatively high. By carefully selecting

the ri values, the fitting accuracy can be further enhanced.

Karpel's approximation has a lower order, and a fitting accuracy

improved over that of Pade's. However, the nonlinearity in the

fitting places a limit on the improvement of fitting accuracy.

See Section III for an improvement of this situation.
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Pade's matrix approximation has the lowest accuracy.

IIi. IMPROVED KARPEL METHOD - THE METHOD OF SUBMATRICES

In Equation (4), take m such that it is an integral factor

of n, and subdivide each matrix into several m x m submatrices.

As

where

(- ,] = (Dj) C R) ] D, " (9 )

-,he following relation holds for a certain submatrix on the left

hand side of Equation (4):

(F,,) + I CG,i) = CQ1.,,) +,k(Q,.i) -k(Q,.,,] 4 (ikC I ] - [,I)" (Di) tE,)j (IC')

Multiplying (ik[I]-[Qi]) tc both sides of Equation (10), separating

the result into the real and imaginary parts, and transposing,

one obtains
(Q.Jr[JKT kl((Q.,] CQ,., T]( , T) _ (F,,]JT - .JT =kCG,j] T

T T T C T T T

k (CQ1,,VjjC ,j CQ,,,)'- -E,) TCD,y) +k 'Q.,,) CG,, T , )T= -k CF,, ( 1)

Combine the relations for the submatrices in the same subrow and

put them in the form of a set of linear equations in the unknown

matrices { . YC O. [ -C . -E] (DI]r, _ _Q., Q. . . .

deno:es the first subrov' (i=l, 2,3) of ii " First solve for these

five sets of matrices, then find the eigenvalues and eigenvectors

of [ 1], to be formed separately into [R] and [D1]. [Q3 ,1], [Q2 ,1]1

[Q1 ,I] and [El can then be solved from the other four sets of

matrices.
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In solving thu oth.r subrows, first : .

of Eouatiu: t (10) as "P'(ukhIl-'R ) . , and writ. (:kIL-[R

as [ARI + i [AIl Tht:r s _:,,t, Eujt n (I0) "*.t'i. th + rt,.-I

imaginary parts, giving

.. ,,- : ',. 4- D, .' Y

Again, combinv the rcations for the submatriccs In the SaML- Sbl.'

and transpose, and one, obtains the set of linear equaticns in

the unknown matrices IQ."', Q:.'. [Q,. [D,] w:.Izh can be sc,'%v-d

-or readily.

It can be seen from Tables 1 and 2 that, with rtspcct tc

the two examples, the fitting accuracy of the results obtained

by this method is much bettir than t..at cf '.Karpc l 's method.

is small in general.,,v is ry small. rnly "21 in exarrle

1 is high. This is because the abszlutc value of the element

with the same subscripts is the smallest. In example 2, there

are unstable extra roots, which can be eliminated by placing

restrictions on the eigenvalues.

In summary, in the above method, Karpel's nonlinear fitting

equation is transformed into a set of linear equations. The fitting

accuracy is thus greatly improved.

IV. A NEW APPROXIMATION

Putting together as much as possible the merits of the various

methods, we propose the following approximation:

+ -" .:D.'.E 1(
9 r, (]4)
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The steps for determining the matrices in the above relation are

as follows:

(1) Assign a value to N.

(2) Assign initial values to r

(3) Take dij =1 for a certain row (such as the jth row),

where i=l,2,....N, and determine the jth row of IQ,), IQ2] and

Q3 ] , as well as [Ei ] (i=1,2 ..... N), using the same method as

Roger's.

(4) For the other rows (e.g., the ith row), one has

N

(O'Q.,) J 7 -k,('Q 3,, J + E' (, F,(k,) )?21 .r...L
( Ik = 1, 2. 5 L)

(LO "... J ) - m ,-k (E.)d.... (LG,(k.) )

In the above equation, IQli) represents the ith row of [Q1 ],

dm i denotes the ith element of [D m, etc. [Q li 1, [Q2,i ] , [Q3,i ]

and the various dMi are solved for.

(5) Find c

(6) Determine ri (with the restrictive condition that ri

be greater than 0.05), and repeat steps (3) to (5), until the

iteration converges.

(7) If accuracy is poor, increase the value of N and repeat

steps (2) and (6).

In the above process, the fitting accuracy is highest for

the jth row that is the first to be determined. Therefore, fitting

should be carried out first on the row where the elements with

larger absolute values or the degree of freedom corresponding

10



to the most important model are found.

Tables 1 and 2 show the results obtained by this method (N=4).

In example 1, c of this method is smaller than that of Roger's.

In example 2, it is larger than that of Roger's. This method

results in slightly higher cij than that of Roger's method, while

Vvf is small for both. However, the order of this method is only

about half as high as that of Roger's method. The accuracy of

our method is obviously much higher than the other two methods.

In summary, this method provides a model with high accuracy

and low order. This is because the augmented subspace corresponding

to each relation in the approximation is of order 1, while the

subspace coresponding to the relations in Roger's approximation

is of order n. Moreover, the interdependence of the elements

in our approximation is reduced to a minimum, and the values of

r are carefully selected, thus the improved fitting accuracy.

V. METHOD FOR AUTOMATICAL MODAL IDENTIFICATION AND FLUTTER POINT
DETERMINATION

From Equation (A6) of the Appendix, it can be seen that the

unified state-space aeroelastic model is given by

(4) = H)(q) (16)

For the significance of the symbols, see the Appendix. The real

part of the eigenvalue of the above equation represents the rate

of attenuation, while the imaginary part represents the frequency

of vibration.

In the above equation, [q] contains the augmented state coor-

dinates Xai (i=l,2,...N). Therefore, N extra eigenvalues have

11



been introduced. These need to be distinguished from the structural

models in the computation.

To identify the modals, one needs to find the first and second

order derivatives of the eigenvalues s with respect to the velocity

V. The first order derivative of the mth eigenvalue Sm with respect

to velocity is

(S.).-Lp. jH )o .) (17)

In the equation, [pm ] and {qm) are, respectively, the mth left

and right eiqenvectors. The second derivative of Sm with respect

to velocity is:
M

(S.),=Lp. I CH.'q. 2 ' -, I.P.J CH),(Q),=l (18)

where M is the total order of the model, and

a.=Lp,] JH).(q.}/(S.-S ) (19)

With the help of these two derivatives, the modal can be

automatically identified. The main line of thought is as follows.

(1) Calculate the eigenvalues for v.O. At this point, the

imaginary parts of the eigenvalues corresponding to the structural
modals approximate the individual vibration frequencies, while

the imaginary parts of the eigenvalues corresponding to the aug-

mented rndqj are approximately zero. Hence, if one arranges

the eigenvalues in the order of decreasing magnitude of the imginary

part, the first 2n eigenvalues will be the ones corresponding

to the structural models.

(2) Calculate (Sm)v and (Sm)vv* Assume the increase in

velocity to be AV, then one can use the derivative at V=V to1

represent the eigenvalue S.'.,, at Vi+IVi +LV:

12



S . '. ; -S . + (S ) ,. -A V + ( S . ,) . . -V , ( 0
2 ~" (20)

(3) Solve for the eigenvalues S from Equation (16),i+l
and compare it with S' If the discrepancies in the real and

m.
imaginary parts all lil within a certain range (eg. ± 10%), then

these two eigenvalues correspond to the same modal. Otherwise,

interchange the order of the eigenvalues.

(4) In Equation (20), it has been assumed that (S ) V 3

m vvv
is a small quantity. Hence, if there is a relatively large differ-

ence between the values of S and S' , one can reduce them. m
step size .V until it is possible to au~o atically identify the

modals.

(5) The point corresponding to the condition where the real

part of the structural modal is zero is the flutter point.

Figure 1 shows the result of the flutter calculation. The

branches 1-4 correspond to the structural modals, while branch

5 corresponds to the augmented space coordinates. o =0 for the

other two modals and is not shown in the figure. From Figure la

it can be seen that the frequency of branch 5 increases sharply

with increasing velocity. Therefore, it is not possible to distinguish

the modals by traditional means (i.e., to order the modals according

to the magnitude of the frequency). From Figure lb, when v-360

ft/sec, there is a relatively large variation in the real part'

of the eigenvalue. Therefore, the step sizes are reduced in the

calculations to keep track of the variation. Thus, this method

can be used to identify the modals and determine the flutter point

automatically even in fairly complicated situations.

13



VI. CONCLUSIONS

1. It has been shown that the accuracy of matrix Pade approximation

is unsatisfactory even though its order is much lower than Roger's.

So does the order of Karpel's, whose fitting accuracy is better

than that of Pade's, but improvement of the accuracy is limited

by nonlinearity of the fitting equation. The accuracy of Roger's

approximation is the best because of independent determination

of elements in the same matrix, but its order is also the highest.

improvements to the Karr:l fitting method which are cr:rzse i

this paper, simply deal with the conversion of nonlinear probl e m - in-:

linear ones, which not only sfmplifies calculation but improves the

fitting a-!curacy somewhat.

2. The fitting accuracy of the new approximate expression pror3set

in this Parer is com.arable to that of Roger but its order numter is

only half that of Roger. it Trovides a model with fitting accura>y

which is relatively high but an order number which is relatively 1: v;.

c. This paper proposes first and second order derivative expressinc-

for flutter determinant eigenvalues versus velocity in state space.

Using these can automatically identify model state and automatically

determine flutter pcint.

14



Table 1. Error comparison between various methods

a t4 Roger T4 ade 9 11 Karpel Psa V, . )

24 12 12 12 12

go 0.58% 1.98% 1.82% 0.48 0.22%

er, -0.9% -0.3% -0.6% -0.5% 0.1%

ell 0.001 0.027 0.0,7 0064 0.025

ell 0.000 0.046 0.021 0.038 0.010

cis 0.001 0.004 0.007 0.003 0.002

014 0.001 0.046 0.010 0.004 0.005

L 0.016 0.203 0.130 0.336 0.087

ell 0.001 0.063 0.024 0.056 0.004

Cis 0.002 0.015 0 023 0 006 0.006

C24 0,005 0.108 0 019 0.008 0 015

Cal 0.003 0.084 0.015 0 061 0 001

C32 0.006 0.066 0.031 0.052 0 003

Css 0.005 0.011 0.011 0 004 0.001

ts4 0.009 0.057 0 044 0 01C 0 003

141 0,002 0.116 0.090 0 : 0 056

142 0 002 0.044 0 009 0 02? 0 016

3 0(09 0.Ol 0 0^,7 C occ 0 003

0 002 0.037 0.027 0 004 0.004

Table 2. Error comparison between various methods

-Roger IF' KArpel A

W 18 9 10

C 0.55% 9.55% 21.59% 0.740 0.83%

g,8  0.3% -5.5% 1.3% 0.8% 1.0%

ell 0.007 0.062 0.060 0.009 0.003
ell 0.016 0.220 0.170 0 014 0.011

cis 0.002 0.104 0.234 0.004 0.001

gal 0.021 0.089 0.172 0 015 0.46

all 0.000 0.041 0.138 0.015 0.023

gas 0.005 0.034 0.242 0.002 0.005

gal 0.003 0.005 0.125 0.018 0.021

LM 0.010 0.001 0.038 0.024 0.031

a 0.00 0.110 0.274 0.0G0 0.010

Key: 1) name of approximation; 2) Pade matrix approximation;
3) the method submatrices; 4) method of this paper; 5) order.
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APPENDIX

Equation of Motion for State-Space Flutter

The Laplace transforms for the equation of motion for the

flutter of an aeroelastic system with n degrees of freedom is

(CS+BS(.)J()-q (A) {N(S) (Al)

16



For the meanings of the symbols, see Equation (1).

The general form of the rational approximation of [A] is

given by
N

(A.,) =(Q)+, , 1 (D,,.Q.) + (Q im..,(

The numbers in the parentheses below the equation denote the order

of the matrices. The corespondence between the matrices in the

various approximation equations discussed in the paper and those

in Equation (A2) is given in Table Al.

Substitute Equation (A2) into Equation (Al). After rearranging,

one gets

SCMBA\(S) = -S(B)- K)- + (A3)

where

(M) = CM, - 2Pb*Q,)
2

(B) C=B,)- I pbl'(Q.)

CK)-[K, - I 12 "('

If we take

{X.(S) -(i( I ) + (R,)"C[E,)i X(S ) (A4)

and substitute it into Equation (A3), we obtain, after rearrange-

ment and conversion, the equation of motion for the state-space

flutter; (1) "" 1
-C )-(B (M "(,) (f)(DV

., - 0 (E,) - -(R, 0 (o(A5)

, 0 CE,) 0 b - (Rs '.

17



This equation can be written in the concise form:

{ = jH){ q) (A6)

The total order of the equation is 2N+Nm.

Table Al. Table for corresponding symbols

QA Q t Q Q3 Di Ri E,
I IV J - '- - --S (.s ,,> ) .. t,f.. (f..ff) (-,.,) (,.)

Roger (N +2) a N Q, Qz Q3 J l ,j E.
Padt' r 39 F I Q19 QO0 0 1 -R EO
Karpel 2: - 1 Qi Os ID Q, E

IM M 2.+N I N Q, Q Q sj D, ri E.

Key: 1) name of the rational approximation; 2) total order; 3)
Pade's matrix approximation; 4) method of this paper; 5) with
respect to Pade's matrix approximation, we have:

CQi,'= - [.XPO3

(QIJ CPS)
LE) = CPzJ - (Q0 + (R)XQ&)
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STUDY ON LONGITUDINAL DYNAMIC CHARACTERISTICS OF PILOT-AIRPLANE SYSTEMS

- APPROACH TO THE METHOD FOR STUDYING PIO1 PROBLEM -

Ch'en T'ing-nan Li Ch'un-chu

(Air Force College of Engineering)

ABSTRACT

In order to meet the needs for studying PIO (Pilot-Induced

Oscillation) and take -:he serious influence of control system nonlinearity

(e.g., clearance and friction, etc.) on PIO into account, a dynamic

structure diagram (see Figure 2) and an analog structure diagram

(see Figure 3) of longitudinal motion of pilot-control-airframe

with nonlinearity have been derived. Moreover, computations have

been carried out on a DMJ-3A analog computer for three cases as

examples, i.e., the moment arm in normal state (short arm), the

moment arm in troubled state (long arm), and the moment arm still

in troubled state (long arm) without pilot's correction, for a

fighter flying at low level and high speed. The results are shown

in Figure 4, Figure 5 and Figure 6. It is obvious that they coincide

with the actual flight and thereby it is proved preliminarily

that the structure diagram and the analog structure diagram (i.e.,

the computation method for PIO) proposed are not only reliable,

but also of value in practical analysis and use. The results obtained

also demonstrate that the phenomenon of the longitudinal oscillation

with big amplitude for a fighter at low level and high speed is

the problem of PIO.

Received in January 1982.
1) PIO: an abbreviation for Pilot-Induced Oscillation
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In order to get a clear uiderstandi; of the influno.i of the jpilot

on the pilot-airplane system, different pilot's transfer functions

have been adopted to compute the pilot-airplane system on the DM3-

3A analog computer. The results obtained prove that the mathematical

model of the pilot exerts a great influence on the piiot-airplane system

(see Figure 7).

We wish to thank Prof. Chao Chen-yen,Assist. Prof. Fang Ch'eng-

Chin and Assist. Prof. Liu Cb'ien-kmj for their guidance in this study.

I. PRESENTATION OF THE PROBLEM

Arround the 1940's, because of improved performance and ranac of the

flight of airplanes, there arose the problem of "pilot-induced

prolonged or uncontrollable oscillation"[3], i.e., the so-called

PIO. PIO is not a simple problem of stability of the airplane

itself. As described in Reference [4], airplanes in which PIO

occurred depended both on themselves and on the pilot at the control

stick for stabilization. Therefore, this is a typical stability

problem of a pilot-airplane combination.

At present, PIO has become an important problem affecting

the performance of high-speed airplanes. It has aroused great

interest, and is being studied at home and abroad. However, in

the literature we have studied, the effect of nonlinearity has

often been omitted. It has been clearly pointed out in Reference

13] that control system friction and flight path are also sig-

nificant factors affecting PIO. Moreover, in some studies on

PIO at home and abroad, no consideration has been given to the

influence of the pilot. In others, the pilot's transfer function

has been reduced to 1. This is not appropriate, either.
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For example, some of the so-called "large-amplitude osciiiations "2

were actually due to the pilot's participation in the control.

In order to carry out a more accurate and realistic study

of the PIO problem, i.e., the problem of stability of the pilot-

control-airframe system, we have, through research on the struct .f

and inter-relationship of the pilot, the control system and thL

airframe, presented a dynamic structure diagram of the longitudinal

motion that includes nonlinearity. Computations have bee: carried

out on a DMJ-3A analog computer.

II. CONSTRUCTION OF THE DYNAMIC STRUCTURE DIAGRAM OF THE LONGI-
TUDINAL MOTION OF THE PILOT-CONTROL-AIRFRAME SYSTEM

The pilot controls the airplane chiefly by means of adjustment

of attitude f or overload An . We will discuss the case of contrcl

based oi overload I .

In this paper, discussion will be centered on the type of

airplanes in which (1) the control before the power-assist unit

is mass trimmed, wherefore

K (overload feedback gain) m 0
y

K&= K b (s-feedback gain) = 0, and
n g

2)"Large-amplitude oscillation" is a term used by the troops for
large-amplitude longitudinal oscillation.

1) We plan to discuss the case of control based on attitude in
another paper.
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(2) th,. powec-Assist unit is irrcv -rsib1c, w ,zxfur-

KW~(C anil &Lfedbtc?. gain) 6.

Thus, the block diagracm for the ilot-co:ttrc&-airframt systia

can be sizmp.ified to that show: in Figure 1.

t9

e

Figure 1. The man-rachine block diazrar of an alrcraft wh:se

control is mass trimmed and is c-f irr-vtrsibLe tin.
Key: i1 ' ; 2) pilct; 3) contro syste7; 4) airframt.

Yinput

A. Mathematical Model of the Pilot

The study of the mathematical model of the pilot is a very

complicated task. Much work has already been done at home and

abroad. Specifically, the model should possess such characteristics

as nonlinearity, delay, adaptation and self-adjustment[7]. In

most cases, however, only one or a few of its characteristics

have been stressed for the sake of simplicity. In this paper,

we use the pilot's transfer function given in Reference [9]:

G Ke'
pilot (s) 1+T-S
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B. Mathematical Model of the Control Sy.-tem

The loncitudinal control system refers t, tit< cntire system

from the cntrol stick to the elevator. It includes the control

stick, connector rod, mass trim, moment arm, load mechanism,

,ower-assist unit and the elevator. To s.1:li7V the computatio.,

we make the following assumptions:

(1) The effect of gravity is negligible. Because gravity

is basically a constant, it can only have a very small influence

on equilibrium[8].

(2) Effect of mass (inertia) is considered for the elevator

only. The reason is: for an aircraft whose control is mass trimmed

and is of irreversible type, the overload has no effect on equili-

brium. Moreover, in controlled motion, the acceleration is in

general relatively small. Therefore, the inertia produced in

the various control columns before tie u'er-assi.t unit is negligible

when compared to that produced by the load mechanism.

(3) The inertia produced in the elevator is regarded as an

inertial load on the power-assist unit and therefore is added

onto the values of the power-assist unit in the computation.

Based on the above assumptions, the structure diagram of the

control system can be constructed sectionally.

1. From the control stick to the power-assist unit (including

the load mechanism):

xz=f (Pz' flight path, friction)

xl=K1x z

24



un
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CD,F I I ] 1 I I

"Ii Ii iEi f

L _jis

(NOR) -- -- -J -t

Figure 2. The dynamic structure diagram of longitudinal motion of pilot-control-airframe
combined system.

Key: 1) an ; 2) rudder; 3) elevator; 4) shear; 5) pilot; 6) control system;
Yinput 7) power-assist unit; 8) airframe.



In the above equations, x zis the displacement of the control stick,

Pis the moment of the control stick, x 1 is the displacement of

the forward-pull stick of the power-assist unit, and K 1 is the

transfer ratio of the two displacements.

2. Power-assist unit:

From Reference [10] , the dynamic structure diagram of the

power-assist unit is as shown in (B) of Figure 2.

3. From the power-assist unit to the elevator:

The displacement x output by the power-assist unit causes
p

the elevator to deflect. Besides serving as input to the airframe,

the deflection of the elevator also has the following two effects.

(1) It produces an increment in the shearing moment in the

elevator. This increment in moment is directly fed back to the

power-assist unit.

(2) The angular velocity 6 z of the deflection of the elevator

gives rise to a certain resistance moment, which is also fed back

to the power-assist unit. The magnitude of this moment can be

calculated from the following relation:

'A msh/arm b2 S ruderk V
reisace seaz rudder" rude K

The dynamic structure diagram for this portion is as shown

in (C) of Figure 2.
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C. Mathematical model of the airframc

As the problem of PIO is mainly associated with short-period

modes, the transfer function of the airframe will also be expressed

in terms of short periods.

The effects of the airframe are as follows. First. :.n is
y

produced as a result of the input '. This 'n is to be fedz" y
back to the pilot. Secondly, the input of gives rise to

and z? all of which will give rise to an increase in the angle

of attack of the elevator .ele\,ator* This causes an increase

msear " .levator in the shearing moment.

The dynamic structure diagram of the airframe is as shown

in (D) of Figure 2.

D. Dynamic structure diagram of longitudinal motion of the

pilot-control-airframe system.

From the above analysis, the dynamic structure diagram of

the pilot-control-airframe system should be as shown in Figure 2.

III. COMPUTATIONAL METHOD

It can be seen from Figure 2 that after the nonlinear factors

of the pilot and the control system are introduced, the solution

of the problem becomes very complicated. The authors used an

analog computer to solve the problem presented in the structure

diagram.
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Based on Reference 11]1 and similar works, the dynamic structure

diagram in Figure 2 can be transformed into the analog structure

diagram shown in Figure 3. (The transfer coefficients given in

the diagram correspond to those in the following computation.)

For the pure delay e-' , the authors have used the curve

fitting method of Smith and Wood, taking

10+ 4. 7 -S+ T'S'

In addition, in order to increase the simulation accuracy

for the friction characteristics, we have, on the basis of Reference

[111, put two ratio devices in series.

For the equations used for obtaining the transfer coefficients

in Figure 3, see Reference [2).

IV. EXAMPLES

The emphasis of this study is on the man-machine system stability

of a fighter flying at low level and high speed under three typical

conditions, namely

(1) moment arm in normal state (short arm),

(2) moment arm in troubled state (long arm),

(3) moment arm still in troubled state (long arm) , but without

pilot's participation in correction.
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The analog structure diagram is basically the same for the case

with the moment arm in normal state and that with the moment arm

in troubled state, except that the values for the constant-coefficient

parts a,b,c and d, and for the voltage and slope at deflection

point on the general function representing the moment of the control

stick are different (see Figure 3). The analog structure diagram

for the case where the pilot does not participate in controlling

the fighter can be obtained by making some changes in Figure 3.

These are:

(1) Cut the return part of the overload feedback.

(2) Omit the pilot contribution.

The conditions for the computation are taken to be as follows.

Level of flight H=2000m. M=0.9. Weight in flight G=6652 kg.

Center of gravity located at x T=0.41.

The result of the computation for the case with the moment

arm in normal state (short arm) is as shown in Figure 4, where

the input An,=0.5.

Figure 4. The man-machine system
output of a fighter with its moment
arm in normal state (short arm).
Input: 0.5g.

Key: 1) (1/sec); 2) (sec). 0.7o

j0.Q1Q .. 10.10
0. 50t

, 005 0.
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The result for the case with moment arm in a troubled state

(long arm) is shown in Fig'ire 5. It should be mentioned here

that in this case there is rapid divergence. If the input is

s-1i taken t 2  te An,% , t.er t.he -.a f ne 1 oki i t e .
.... oadei. We have redu ej the input to Am--O.025 si. as te

" rol-ng the period before overloa o::'ur: ar.: ; a clear

I:tu~re of the process of divergene.

Figure 6 shows the result for the case with the moment arm

still in troubled state but without pilot's correction. The input

is still taken to be ,n = 0.5.
Yinput

In order to see the effect of the pilot on the man-machine

system, we also computed the man-machine stability under the condition

in which the pilot's model was replaced by G pilot(S)=l. The result

is shown in Figure 7.

From the curves obtained from the computation we see that

for the fighter flying at low level and high speed:

(1) When the moment arm is in normal state (short arm), the

man-machine system is stable. This is in agreement with the actual

flight experience.

(2) When the moment arm is in a troubled state (long arm),

the man-machine system is unstable. Divergence is rapid even

for a very small input. ( In the example,An is only 0.025.)
This is also in agreement with actual flight experiences.

,3) When the moment arm is in a troubled state (long arm)

and the pilot does not participate in correction, the man-machine

system is stable. This agrees with the pilot's experience.
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1.5 0.060.o

1.0 0.04 ...... *a, 0.4

0.3

0.5 0.02 0.2

10.

S. 1.0 1 - -2.0 2.

Figure 5. The man-machine system output of a fighter with its
moment arm in troubled state (long arm). Input:
0.025g.

An,

0.5

0 .S 1.0 -1.5 2.0 t(#)

Figure 6. The output of a fighter without pilot's correction and
its moment arm in troubled state (long arm). Input:
0.5g.

A 01, AR, I
1.S 0.75 Ke -'s

Oer . ... (S)=

1.0 0.50

0.51 0. 25

Figure 7. The effect of pilot's transfer function on the man-
machine system.
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Key to Figures 5,6,7: 1) (1/sec); 2) (sec).

(4) If, when the moment arm is in a troubled state (long armr),

the pilot's transfer function is simplified to 1 (i.e., the effects

of delay, inertia and amplification are omitted) , then the man-

machine system is stable. This obviously does not agree with

what happens during actual flight.

V. CONCLUSIONS

The following conclusions can be drawn from the simulation

computations:

1. The structure diagram derived and simplified by the authors

for a man-machine system that includes the nonlinear factors of

the pilot and the control system can be used in the study of PlO.

Not only is the computation method relatively simple, but the

results are also very reliable.

2. The authors believe that the large-amplitude oscillation

breakdown that occurred to a certain fighter while it was flying

at low level with the moment arm at long arm was a PIG problem.

The divergence of the oscillation under such conditions was entirely

due to the pilot. If the pilot had not participated in the correction

then the airframe would have been stable.

3. There is a fundamental diff'erence between the stability

of the airframe and the stability of the closed-loop including

the pilot.

33



4. The pilot's transfer function has a large effect on the

computation of man-machine stability.
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STATISTICAL DETERMINATION OF A FLAI DETECTION

PROBABILITY CURVE

Lin Fujia and Huana Yushan

(Northwestern Polytechnical University)

Abstract

The reliability prediction and damage
tolerance analysis of aircraft structures
based on the principles of fracture mechanics
require the knowledge of the ability of flaw
detection. A statistical method for deter-
mining the flaw detection probability curve
is developed and a test techniaue for obtain-
ing independent flaw detection data is
described in this paper. Based on these
data and a formula proposed in this paper,
the confidence lower limit of the flaw
detection probability with the qiven con-
fidence level for an arbitrary size of a
sample and for an arbitrary value of the
detection probability can be calculated
merely with the help of the table of F-
distribution. The presented formula
occurs exactly and simply in comparison with
other approximatc formulas proposed by some
authors.

As an example, the flaw detection
probability curve with 95' confidence is
given, which comes from the results of
inspecting corner flaws at holes in 50
specimens. The soecimens were made of steel
45 and the magnetic-particle technique was
applied for non-destructive inspection.

Finally, the simplified method for
determining the flaw detection probability
curve is also discussed.
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STATISTICAL DETERMINATION OF A FLAW DETECTION /21

PROBABILITY CURVE

Lin Fujia and fluana 'us:

(Northwestern Polytechnica! U:.iv-.

ABSTRACT

This paper describes a method for obtaininc a:.d manipulatina

data for determining the flaw detection orobability curve. A

formula is given for the lower confidence limit that is accurate

and simple. Results of actual tests have been included. A

simplified method for determining the flaw detection probability

curve is also discussed.

I. Introduction

In the design of aircraft structure damaqe tolerance basec

on the principles of fracture mechanics, it is necessary to

calculate and predict the extent of the spread of the flaw.

In engineering practices, the initial length ai of the flaw,

which is an important determining factor of the flaw spread,

is sometimes determined on the basis of the reliability of flaw

detection. For example, it is stated in the U.S. Military

Specifications on "Aircraft Damage Tolerance Requirements" [11*

that all flaws larger than oi must have a detection probability

of 90% at the 95% confidence level. Obviously, to determine n.

by this method, one needs to determine a detection probability

curve experimentally that corresponds to the confidence level

1 - a. This is the curve representing the variation of detection

probability with the length of the flaw a', i.e., the P L(D/c-,)

a curve.

*Received in October 1981.
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dastr lbut .o:. ,.." . - U ^'s t.., .. " . c ,: .] .,t. " *;, :, .. "' 0

Cur-e . t , - , 4

Tcsts have s'.; t:.at , bes:.ats th. tyV, ,f rzt'.Cv: usedC

for nonciestruct ave tvst ino, factors ,f fct -.- th. fa Octect P'

orobabiIity !l.cu'- d ;;etcraal c(.:- acterist c., sa,: tn C rsosCtse z

of .... , s.rface socth .s . c' t2-. str'rturt. rrt co tar. .....

t:e f'aw, work en.iron.--nt , a 1 inat .n anu t,.. c--r(.t(-ncC-

attitudc,,f tte insc.t, ticn persan:t . TY.C (,.c:. , 0 **.n .n .

pacer further shows that, af tht e p - tan s: , u-rtct ". .C

the f law is likely to occur is k now (suc con".itiorns e::st a:.

aircraft structures), then thert wi be an a-. reca 'V 1 :;cr(

in the detection probability. .enc, in the da7'a,( t-,r.n

desian and reliability analysis rf aircraft structures, it a.z

no t su: fi cient ust to know the det,.,cti n r babi 2 1tv curv -

a certain non_ strctive testan :t , raccrt.,:v

condition. To re. iably :redict the ife 7:rd L.ro.k '..

of a structure, one must deter.-ne the detect in rrbaba' at:.

taking all practical conditions intc consil.eration.

However, at present there is a lack of such curves an-4

standard procedures to follow in their determination. In this

paper, a method for obtainina and manipulatina data 'or deter-

r.ininq this type of curve is presei.ted. The feasilVity c' t!-is

method has been demonstrated through actual tests.

II. Method for Obtaininq Data for Flaw Detection

First, to simulate actual conditions, prepare a given number

of specimens with flaws of different lengths. (In the case where

a sufficient number of actual structural parts containing flaws
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are available, it is not necessary to take t!s stej.} To

simulate actual conditions means to ensure thit th, st,,cimenn

are as close to the actual structural parts as psible in

material, surface smoothness, shape of tl"t rqi ,. eontii:

the flaw and the type of flaw. The.vn, ust t.lt see ind nor7-

destructive testinq method to do reteated tests under te,

specified conditions (including work environment, illumination,

technical competence of the inspection personnel, etc.), thus /2?

obtaining the number of flaws detected and the nu,.mbers of flaws

that have escaped detection.

To be sure that representative and indelendent tests a-k

done, the total number of specimens should not be less than '0,

and half of the specimens should be free of flaws. The number

of inspectors should not be less than 5. Each assignment of

detection to each inspector should be completed independently.

In the example given later in this paper, we have proposed

several practical methods for ensurinc, the independence of the

detection results.

A key problem in detection lies in the determination of

the number of flaws that have escaped detection. The number

of independent detections K of a flaw and the number of times

the same flaw has escaped detection J are important data in the

statistical analysis. K can be obtained directly. To determine

J, one must first decide if the "flaw" actually exists.

Experiments show that the following two methods lend themselves

well to the solution of this problem:

1. Appropriately increase the number of independent detections
.... ... . ...a f' In. fiaw "t' , .2. . . :

" ''-'>:'L '1,'P(D.,a)=p, : 0. < p< I . T I,t F al' ',

E.c' 4 t n detect- i-, q I - P < I, the F'2I'i: ..

? i i pen e e etect ions al1 es1 -- s ln,, Jet

tv l u:- ly, w 1 ,'n K i s !arn e , 7 K
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certainly be detected if a sufficient number of detections

are performed on the same flaw.

2. Apply a fixed static pull (equivalent to hilf of the load

of the prepared flaw) to the specimen, and carry out the

detection under this condition, so as to render the flaw

more visible. This method allows an effective determination

of the existence of the flaw as well as a relativelv accurate

determination of the length of the flaw.

II. Statistical Analysis of the Detection Data

First, divide the lengths of the flaws into several ranges.

Use the largest value in each ranae to represent the lengths of

the flaws in that ranqe, and fill in the detection data accordingly.

Then, determine the detection probability for each single-flaw-

length range in the following manner.

Each detection can have only one of two possible results:

either the flaw is detected or it is not. Assume the Drobability

of detection P(D/,) p, and the probability of not detectina the

flaw P(D/n) = q = 1 - p. Thus, the binary distribution is obeyed

by the number S of flaws detected when n independent detections

are carried out for the flaws in the same flaw length range, and

one has

P. (S = S.) = C.-' . ... (1)

In the equation, p is unknown Its point estimate is 0= Sn/n.

To be on the safe side, it is usually required to find the lower

confidence limit PL of p in accordance with the specified con-

fidence level 1 - a. The probability condition that needs to be

satisfied is

P (SS.)= CpL'(I-pL)''=a (2)

.
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In general, tables of cumulative binary distribution list

values for up to n = 30 only, and do not meet our needs. In

Refs. [51 and [6], the usual approximation method is used; i.e.,

when n exceeds 30 and p approaches 0 or 1, Poisson's distribution

is used to carry out an approximate calculation of pL; and when r

has an intermediate value and n is very large, after a definite

transformation, the normal distribution is used to carry out

approximate calculaton of pL* For example, for n = 45, Sn = 43,

= 0.05, the value of pL as calculated using the above approxima-

tion is 0.894. The exact solution satisfying Eq. (2) is 0.867.

The difference is 0.027, which may not be neglected in the region

of high detection probability, as this is the region very closely

related to structure safety. Moreover, this method of approximation

is not very convenient to use. In this paper, the value of pL

satisfying Eq. (2) is found by merely using the table of F-dis-

tribution and the following exact and simplified equation:

f. (3)P L= f, -t-/ :

In the equation, the upper degree of freedom of the F-distribution

f = 2(n - Sn + 1); the lower degree of freedom of F-distribution /23

f2 = 2S n x, the upper percentage point of the F-distribution, is

found from the F-distribution accordinq to the following equation:

P (F>x) 
(4)

We prove Eq. (3) as follows:

Let F(x) -f t X-e -tdt F function,
0

B C(y, e)
I(y, -y, q) y Beta distribution function with

y and . as parameters,

B(Y,9) = fIt-(l - t) -1dt = I(Y) r( _) Beta function,
0

B y(y, f) = fYtY- (1 - t)- dt incomplete Beta function.
y 0
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In the above, 0 s y s 1; Y, e> 0.

The probability density function for an F-distribution

with given degrees of freedom f1 and f 2 is

,,-,1
F 1+ -L1 ZL_ x "-2
r(2') ILI 2 (X>0)

p(x.f, h)= - f, f2 l ft
r-- - f U+,x) 2

Transforming into an equation in the variable

f 2 +f F

one can deduce that Y obeys the Beta distribution with parameters

fi fY = -- , 8 = -- , i.e.,

P I]' '' = I y, f 2

From the relation between F and Y, one readily obtains

f 2f 2  1
P{F > = If + fix 2 25)

On the other hand, one can prove by repeated integraton

by parts that

p,.'p ( 1 ,- C.- JP ,-' ( 1 - )-"dl
S -Ss

It is easily seen that

-t B(S. S.-- I)
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Therefore,

n n-i Sn n n +) (6)

i=S
n

By letting

=1 n - S + 1 , i.e., f1  = 2(n - Sn + 1) , and

f 2 S i.e., f2 =2Sn

and comparing Eqs. (5) and (6), one can see that if x satisfies

Eq. (4), i.e., P{F ' x1 = a , then the value of PL calculated

from Eq. (3) must satisfy Eq. (2), Q.E.D. /24

The P(D/.) vs. a and P L(D/,-) vs. , curves are obtained by

plotting the results of statistical analysis of inspection data

for each flaw-length region.

IV. Example

We used 45# steel to make 50 specimens with dimensions

as shown in Fig. 1. Cracks were prepared by means of a high-
frequency fatigue tester. Half of the specimens were kept

crack-free, while the rest contained cracks of different lengths.
Inspection was carried out by means of the magnetic particles

method. To ensure the independence of the test results, the fol-
lowing requirements were imposed on the inspection process:

(1) The results of the inspection were recorded by a specially

designated person. The 8 inspectors did their jobs

separately without exchanging information or discussion.
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(2) All the specimens had to have the same external appearance,

without any noticeable marks on their surfaces.

(3) Two separate inspections of the same specimen by the same

inspector had to be spaced by at least two days in time.

,30

Figure 1. Specimen configuration.

Data analysis of the results of inspection is given in

Table 1. The results are plotted in Figure 2. Flaw length

refers to the length of the crack along the surface of the

specimen.

Table 1. Analysis of the results of flaw detection (1 - 959)

Key: 1) Flaw-length range (mm); 2) Total number of flaws;

3) Number of flaws detected; 4) Point estimate of detection

probability; 5) Upper degree of freedom in the F-distribution;

6) Lower degree of freedom in the F-distribution; 7) Upper

percentage point of the F-distribution; 8) Lower confidence

limit of detection probability.

2S. PW~x = l-fix

0.41-0.60 513 158 0.308 712 316 1.18 273

06:-.69O 264 152 0.576 226 304 1.23 0.522

0.81- 1.00 11] 95 0.836 34 190 1.49 0.789

1.01-1.20 157 141 0.898 34 282 1.47 0.849

1.21-1.40 191 175 0 916 34 350 1.46 0.876

1 41 -1.60 225 213 0.917 26 426 .52 0.915

I.C -1.80 176 169 0.960 16 338 1.68 0.926

1.81-2.00 65 65 1 000 2 130 3.07 0.953
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PL) (D PL(f a)

0. 8

0.6-

0.3 P1D 0 1 4

2 2

Figure 2. P(D/a) vs. a and P L(D/a) vs. a curves obtained from

inspection data.

Key: 1) Point; 2) (mm).

As the position and direction of the cracks in the given example /25

were definite and as expected, detection probability was rather

high.

V. The Form of the P(D/1 ) - a Curve and the Simplified

Detection Method

As it takes a lot of time and manpower to do a thorough

determination of the flaw detection probability curve, we

propose a simplified engineering method. The basic idea is

to make use of available information besides the data obtained

for the present inspection. First, determine the form of the

P(D/,) . a curve and some of the parameters, based on given

information. Then, take a few specimens (about 10), and carry

out the inspections in one or two of the flaw-length regions.

The remaining parameters can be estimated from the results

obtained. Ref. [8] contains the experimental curves showing

the ability of four nondestructive testing methods to detect

surface cracks. The detection results given in this paper for

using the magnetic particles method for detecting cracks can
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also serve as a useful reference. Following is a discussion

of three forms of P(D/a) -% a curve.

1. The power-expansion form used by Yang-Trapp [2]

P M-Oa ) - '

P(D,"a) a<a,

1 , a >a2

al, a2 and m are constants to be determined. The physical

meaning of a and a2 is obvious. Therefore, these two constants

can be determined empirically. Thus, only m needs to be

determined from experiments performed under given conditions.

Note that as a2 has a larger effect on the results, one should

be conservative in choosing its value.

2. The exponential form used by Davidson [31

P(Da)J0, a <-a,
cw{ 1 -exp-cf(a-a), a>a

cl, a0 and c2 are constants to be determined. c1 is very

close to 1, and can be chosen in advance (e.g., c1 = 0.98 - 0.99).

The reason that c1 is not se' equal to 1 is due to the fact

that even very long cracks can sometimes be overlooked in an

inspection, a 0 has a definite physical meaning, and can be

determined empirically. Thus, only c2 needs to be determined

through the detection process.

3. The Weibull probability distribution used by Heller-

Stevens [9)

P(D/a) 1 -exp[-(! ' ], a>0

In this equation, b and c are the undetermined constants. As an

engineering approximation, one can assume that b is the same for
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the same nondestructive testing method. Only c needs to be

determined experimentally. An advantage of this type of function

is that it reflects the fact that even very small cracks can

sometimes be detected, while it is sometimes possible to overlook

a very large crack.

It remains to be determined which of the above three forms

best describes the actual situation. As far as curve fitting

is concerned, as the first two forms contain more parameters

which can be estimated from a set of data obtained in the experi-

ment, they can perhaps be better fitted to the experimental

data. Table 2 gives the results of fitting these three forms

of functions to the data obtained for our example. The residual

standard deviations are given for the purpose of comparison.

Figure 3 gives the three fitted curves.

As in the engineering approximation mentioned above, only

one parameter needs to be experimentally determined for any of

the forms; the multiple-parameter fitting feature of the first

two forms is no longer an advantage. In this case, choosing /26

the third form simplifies the plotting process as one can do

it on the readily available Weibull probability paper.

I a m * YANG-TRAPPU A# DAVIDSON2 WEIBULL2

a=0 59* ao=o.534* b =2.06
'tas = 1. 24 *a 0.99 vlM=O 246 ca 3.431) 'K-1 C=,

Y 0.05 0.050 0.061

Table 2. The Results of Least Square Analysis.

Key: 1) Functional Form; 2) Estimated Value of Parameter;
-1

3) Residual Standard Deviation; 4) Form; 5) mm; 6) mm
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P( ' a)
1.41

0.8~

0.1 /1 N TRAPPI,

0.5 1.0 1.5 2.0

a 4.)

Figure 3. Three Types of P(D/ ) vs. a curve.

Key: 1) Experimental point; 2) Form; 3) (mm).

VI. Conclusion

Every nondestructive testing method has a certain range of

sensitivity. Methods that are effective in the range of short

crack lengths may have decreased sensitivity in the range of

long crack lengths [8]. Therefore, while using a particular

method, one must bear in mind the range of effectiveness of

the flaw detection probability curve.

Many nondestructive testing methods have their flaw

detection ability based on the area of the flaw. In this case,

the statistical method of this paper is still applicable if the

flaw length is replaced by the area of the flaw.

Many of the comrades of the former Room 504 of Northwestern

Polytechnical University participated in the experimental work

of this paper. We thank them all.
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MULTI-LEVEL SUBSTRUCTURAL ANALYSIS IN MODAL

SYNTHESIS -- TWO IMPROVED SUBSTRUCTURAL

ASSEMBLING TECHNIQUES

Liu Guoquang and Li Juniie

(Aircraft Structural Mechanics Research :nstituteI

Zhanq Dewen penned

(Beijing Institute of Structure and Environment Enaineerina)

Abstract

Most of the prevalent mod.: 1 synthesis
methods [1-10] are referred1 to as "single
level synthesis." Their application to
dynamic analysis of large complex structures
may be limited by computer capacity. Two
improved substructural assemblinq techniques,
called "multi-level synthesis" and "succes-
sive synthesis," are presented in order to
raie computation efficiency and to be
a'v~iabie for calculation of large structures
on a computer with small interior capacity.
In the present paper the "rigid substucture
technique" [11] is also employed.

A typical example has been calculated
with satisfactory results. Numerical cal-
culations show that the accuracies of the
two improved assembling methods are trustworthy
provided the frequency criterion proposed in
this paper is adopted.

I. introduction

The substructure model synthesis established by Hurty III

is one of the methods of substructural dynamic analysis. it

has made possible the calculations of dynamics of large

1. Received Auaust 1981.
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structures using a computer with limited capacity. At the same

time, it ensures the independence of the design, modification

and tests of the parts.

The emphasis of the "fixed-interface .methods" 1, 2] and the

free-interface methods" [3-6] that have been prevalent for

many years has been on the choice of the substructure (static

or dynamic) modes. The assemblino of substructures has remaine]

in the stage of "single-level synthesis." This type of

assembling method is still subject to limitation by the capacity

of the computer. In this paper, two improved assemblina

techniques, called "multi-level synthesis" and "successive

synthesis," are proposed. These techniques can lower the

requirement on the interior capacity of the computer, and make

it possible to do calculation of large structures on a computer

with small interior capacity. Moreover, computation efficiency

is thereby increased. In particular, when the substructures

are appropriately subdivided, the successive synthesis method

can reduce the bandwidth of the stiffness matrix and the mass

matrix.

Because of limited space here, only the important points

of the "multi-level synthesis" and "successive synthesis" will

be described in terms of the "pseudo-fixed-interface" mode -, 9

of the free-interface method. Some derivations will be omitted:.

For the "rigid substructure technique" and related ecuations,

please see Ref. [l]. For the "pseudo-structure analysis" usc i

for free substructures, please see the HAJIF-I Theory Handbook

to be published, as the method presented in this paper has

already been adopted by HAJIF-I.

1. HAJIF-I is an abbreviation for "Aeronautical Structural

Dynamic Analysis Systems."
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IIUI-.'ocdA.e- 1iKJ - tt--'w yt*

tion in the c-.-f.ri ,.- Q " :itt

ln Fiqire 1, 1-5 r:.r-s,,t the cAst c subtructures, n: !

1 and 2 represent t,. r i:id sbst rct :res. T s sy te': sh,7 '.

in Figure I can be an ,,zi dyn ic:K y usn " the tree-tv:, -

substructurv system 7iven in Fic.ure 2. In the f,' , t

<, r> denote the rth substr tur, of th .. : ce.'- T- r:i

parts can be treatc: -- is i a substr': t7res rather . F

belonrqin-q to t:.u nei ;bor:na elastic s'h. struct-re.. (S(., PC,

(11] for the advanta.e an" m e.o3 of th is a rrnc!. .)

Figure 1. A qneril structure Fiqure 2. A muti-e,'c (t:..-

system. type) substructu:,

system.

First, we use the method of finite element analysis to

establish the direct equation of motion of the elastic substructure

r of the 0th (original) level:

[m BB mBI B k BB kBI uB Rr rr + r r(r
Lm B  m IT I k k

r r r
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The superscr ipts B and I denote interface and inte-ior, respect i%, .

K RB ' Ls t-.c interface reaction force.
r

Based on the Rayleigh-Ritz analysis, we use the auxiliary

mode ' and the principal mode r. of the free interface, to

describer the displacement ,fru in the free-interfac, method.r

From Refs. 13-6] we know that

GPB C'1B[Gl GI [,N N I;N~ [Gr B  rB

[G- her e r= (2

r K~ r r

In the equation, [ or ] is the set of elastic modes in I ' 
r wit ". t..t ,

correspondinq cioenvalue matrix

(Q,- ~X,."

The subscript n is the number of reserved elastic modes. To

calculate the complete flexibility matrix [Gr' apply the
"pseudo-method" to the free interface substructures.

The principle mode .r is a set of low order eiqcnvectcrsr

taken from the characteristic equation of Ea. (1) accordinq to

the criterion

, a ( ) I- ),,, >-- , (4 )

N,
We require r to be normalized. In Eq. (4), % is determinedr
as a statistical parameter. The exponent P denotes the total

"level" number, while p denotes the "level" at which the

substructures underqoing synthesis are found. max is the

maximum accurate anqular frequency of the entire structure that

one desires to obtain.
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Based on the free-interface method given in Refs. [3-8],

neglecting residual inertia, we assume that

According to Ref. 151 and Ref. [61, by starting out from Eq. (5),

one can eliminate entirely the components along the interface

coordinates, in the general coordinates described below.

However, in order to unify the synthesis schemes of the free-

interface and fixed-interface methods so as to simplify the

procedure, we change Eq. (5) into one in the "pseudo-fixed-

interface" mode:

4)3(I (6) / r
N.

In the equation, rand are named "pseudo-restrictedr r
mode" and "pseudo-fixed-interface principal mode," respectively.

Then, the equation of motion in the general coordinates ro

is obtained by the usual method. For the equations involved,

see Refs. [71 and [8).

Now, take several "0th" level substructures to assemble

a "1st" level substructure <1, r>. Take the synthesized

coordinates of <1, r> to be

(q<,,> Li<- .> PW ... pW ... pWJT (7 )

The superscript T denotes matrix transformation. {B <1

is made up of {u-} ... {u and independent components in
BB Ir

fu} ... fu's . From geometric considerations, we have

(p,) = (T8 )<,.,>)

(9)
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from which we can write

{u; - T!) , (10)

= t; ,q.:..>}(11)

We give [T] the general term of "assembling matrix." To clarify

how we arrived at Eqs. (10) and (11), we use the substructures 4

and 2 in <1, 2> of Fig. 2 as examples:

.u , ' 0 1 0 ,u

_ ,U ID, 0 0 .48}

(U! : - I = (13)

2 -L / 0 0 " 3

4u
B }ssth Jlr vco

For the definition of D r see Ref. [11]. I UB I is the column vector
of the r - r interface coordinates.

We have, based on the concept of the generalized Ritz method

described above. the displacement of the assembled substructure

<1, r> in terms of the displacement functions that are continuous

only in each original substructure. Now, we derive the stiffness

matrix and mass matrix of <1, r> from its strain energy and

kinetic energy, respectively, and obtain

= C [Tjj (Tj (14)

- T,)'Cu(',)CT,J + ZCT- r " )CT) (15)
r r
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To avoid having to handle a great number of null elements, one

should use the expanded forms of Eqs. (14) and (15) in the

computation using the computer. One can also execute Eqs. (14)

and (15) according to the finite element assembling procedure.

Band-shaped [K< 1 ,r>] and [M<1 ,r>I can be obtained from the latter.

Note that the second term of Eq. (15) can be obtained without

going through matrix operations, but merely by placing [m '] at ther
correct position in [M <I,r> -- the position corresponding to

It is easy to obtain from the principle of virtual work the /31

interface reaction force of the assembled substructures, {R 3.<l ,r)

Thus, the equation of motion of <l,r> is

+M<I, >) f<I,,>}+[K<,,> q<1,,>}= ,(16)

Regard Eq. (16) as the direct equation of motion of sub-

structure <l,r> of the "1st" level, and make subdivisions similar

to Eq. (1). Then, analyze the static and dynamic modes of all

the "1st" level substructures in the manner the "0th" level

substructures were analyzed, and take several "1st" level sub-

structures to assemble a "2nd" level substructure. The analysis

is the same as before except that one has to replace r and <l,r>

with <1,r> and <2,r>, respectively, and to formally eliminate

from the right-hand side of Eq. (15) the second term that is

associated with rigid substructures (on the premise that all

the rigid substructures have been assembled into the "1st" level

substructure).

The equation of motion of the single assembled substructure

(which is given the name <e>) of the final level that is obtained

by repeating the above procedure of synthesizing the levels one

by one is the equation of motion of the entire structure. It has

the following form:

(M<.>)<.> + (K<,>) (q<,>) =0}

(17)
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We should point out that, if in the above "multi-level
synthesis" all the "0th" level substructures are assembled into

one substructure, then we have the prevalent "single-level

synthesis."

As "multi-level synthesis" allows the assembling of only a
few substructures (or assembled substructures) at a time, and

as the interface coordinates of the substructures of the previous

level always have some components that degenerate into interior

coordinates in the present level, each synthesis can be kept on a

small scale.

III. Improved Assembling Method II - "Successive Synthesis"

The main idea of "successive synthesis"is to synthesize the
general equation of motion of a substructure (or assembled sub-

structure) with the direct equation of motion of another

substructure (or assembled substructure) and to obtain the equation

of motion of the total structure by such successive assembling of

each of the direct equations of motion of the (assembled)

substructures.

Figure 3. A tree-type substructure system for successive synthesis.

Figure 3 shows a tree-type substructure system for successive

synthesis applied to the system shown in Figure 1. In the figure,

() denotes the substructure whose general equation of motion is

used in the snythesis, and <> denotes assembled substructure.
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We obtain from the usual synthesis procedure the general
equation of motion of substructure r

(18)
(' ,, { ,u,} + P,), = {R ,

Note that successive synthesis can be regarded as one mode of

multi-level synthesis. Hence, its frequency criterion is still

taken to be Eq. (4).

Synthesize Eq. (18) and the direct equation of motion of

substructures r+1 and r

(m4.,) J,.L) + k[.,) (u,.,) = (R,,) (19)

(20)

The synthesized coordinates are

) S LqBT qITJT.r }  L<r> q r{q ~)r r

B B B
q B} )includes those components of {u, B } and {u B that\r'r'/ (r+1>
constitute the interface coordinates of substructure <r and

the {uI } of the rigid substructures that are located on the edges.Ir
{qr> I is naturally made up of the independent components of

{uB }, {u I and{uI } (r = i, 2, ...)that have degeneratedKr> r+l r
(with respect to <r>) into interior coordinates as well as

fu I Iand fPr N For example, for the assembled substructurer+1,

IT BT T I IT BT NTIT{q < 1 } - 1' 2 u 3  '{q<,) 1 u 1pl /32

Now we establish the following assembling matrix [TI:

(p ) - T<,>) (q,>,, (,) - (T, 1 (q4 >, {>)9 - CT: {q )(21)
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The stiffness matrix and mass matrix associated with <r> are

obtained in a similar manner as Eqs. (14) and (15):

(K<.>J = (r~,,"[t.>) (T ,>) + (T,,T ., (TJ
(22)

(23)

(M<,>) = (T,>Y(iC<>) (T,>) + (T, ,1 (M. 1) CT,,) + M(TT)?Cr) (T)

Similarly, we can obtain the interface force {Rr } of <r>.

Note that Eqs. (22) and (23) are band-shaped matrices whose

bandwidths reach a minimum in chain type structures. Therefore,

the direct equation of motion for "r'> is

cM<,>) {<,>) + CK<,>) (q<,>} m (R<PIJ (24)

The next step is to synthesize the general equation of

motion of Eq. (24) with the direct equation of motion of r + 2,

(M') i4.) + (/.',) (u,,,) = (R,.,) (25)

(If r + 2 has connected to it a rigid substructure i + 1 then set

up [m l and [ D ] of i + 1 to be used in the synthesis.)
r+l r+1 r+2

The synthesis procedure is as described above. In this manner,

the equation of motion of the single assembled substructure <e>

obtained by the successive assembling of all the substructures

is the equation of motion of the total structure. Its form is

necessarily similar to Eq. (17).

IV. Discussion, Example and Conclusion

Compared to the prevalent single-level synthesis, the two

improved assembling methods presented in this paper have the

advantage of keeping each synthesis on a fairly small scale.

Thus, they are very useful for calculation of dynamic problems
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of large complex structures on a computer with small interior

capacity.

Although the method of successive analysis requires a larger

number of: syntheses than multi-level synthesis, it requires a

small number of eigenvalue problem, analyses, and thus has a

slightly higher accuracy. Nevertheless, under the condition of

the frequency criterion given by Eq. (4), the accuracy of multi-

level synthesis is also very satisfactory. (See Table 1, Q
We should point out that to relatively increase the accuracy

of multi-level synthesis, one should fully utilize its ability

to assemble several substructures at once, and reduce the number

of eigenvalue problem analyses to a minimum. Furthermore, under

most conditions, the method of successive synthesis has a better

ability to reduce the bandwidths of the stiffness matrix and the

mass matrix. It has, therefore, a higher computation efficiency

in general. However, successive snythesis is inferior to mulit-

level synthesis in that it cannot be applied to the modes of

natural parts. When using the method of successive snythesis,

one should use the general equation of motion of identical sub-

structures and symmetrical substructures in the snythesis so as

to be able to reduce the amount of computation work based on the

"identity" and "symmetry" characteristics. In summary, the best

effect can be obtained by a tactful combination of multi-level

synthesis and successive synthesis. Hence, a combined "multi-

level successive synthesis" possesses the effectiveness and

flexibility that "single-level synthesis" lacks.

When using the rigid substructure technique, it is not

necessary to perform a series of matrix operations following

the procedure given in Ref. [11), but just to establish the matrices

rmU I and VD I.To save computer time, we suggest that all rigid
r r

substructures be directly assembled into the "1st" level substructures.

We calculated the frequency and vibration modes of an aircraft

(Figure 4) using the fixed-interface mode of the multi-level
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synthesis. Two schemes were used for subdividing the structure,
one with 6 substructures and the other with 4 substructures.

The method of successive synthesis was applied to the 4-sub-

structures scheme1 of Figure 4, using the fixed interface mode.
The results of these calculations are tabulated in Table 1 along
with the results of finite element solution for the entire air-

craft and single-level synthesis. The errors of each method are

given with reference to the values obtained from the finite

element method, taken to be accurate.

Figure 4. A dynamic substructure model of an aircraft.

Key: 1) Substructure.

From the error analysis for - in Table 1, we see that /34
the result of computation not only depends on the order of

accuracy imposed on it but also is greatly affected by the
selection of the frequency cut-off condition. Obviously, it
is not reasonable to use the same cut-off frequency for every

level. Comparison of Q and 0 shows that the accuracy
obtained by using Eq. (4) as the frequency criterion in the

multi-level synthesis is not any lower than that of the single-

level synthesis.

1. Combine substructures 3 and 4, and substructures 5 and 6 to

form new substructures. This gives a 4-substructures scheme.
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Table 1. Comparison of accuracies of two improved substructural assembling methods w.ith

those of other synthesis methods.
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Key: 1) Non-zero order of frequency; 2) Finite element method;

3) Fixed-interface single-level synthesis; 4) Fixed-interface

multi-level synthesis; 5) 6-substructures model; 6) 4-substructures

model; 7) Successive synthesis (fixed-interface mode); 8) Single-

level free-interface method (pseudo-fixed-interface method);

9) Without residual inertia [7]; 10) With residual inertia [8];

11) Rubin method; 12) Psuedo-method; 13) Note:

Note:

1) Except for , the results have been obtained by using

the single-level synthesis frequency criterion , = amaxi

a = 1.5, Xt = 405 rad (200 rad for Q), and 10-6 as

convergence condition.

2) The convergence condition for 0 is also 10- 6, but Eq. (4)

of this paper is used as frequency criterion, and a = 1.5,

= 133.33 rad.max

3) The convergence condition for Q is 10-10.

4) "Rubin method" refers to the computation of [G] of free-

interface substructure by means of the relation given by

Rubin [4].

5) "Pseudo-method" refers to "pseudo-structure analysis."

6) All results have been calculated for the 4-substructure

model if not otherwise indicated.
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The values of obtained statistically in this paper are

all lower than its conservative value 1.5. Also, 9 - G in

Table 1 show that taking the residual inertia into consideration

does little to improve accuracy of the results.

We want to thank Prof. Chao Ling-ch'en for proof-reading

and making corrections on this paper, Prof. Huan Wen-hu and

Assist. Prof. Chu Te-mao for their valuable suggestions, and

Deputy Chief Engineer Kuan Te for his helpful instructions.

REFERENCES

1. W. C. Hurty, "Dynamic Analysis of Structural Systems for

Using Component Modes," AIAA J. V. 3, n. 4, 1965.

2. R. R. Craig and M. C. C. Bampton, "Coupling of Substructures

for Dynamic Analysis," AIAA J. V. 6, n. 7, 1968.

3. R. H. MacNeal, "A Hybrid Method of Component Mode Synthesis,'

Computers & Structures, V. 1, n. 4, 1971.

4. S. Rubin, "Improved Component-Mode Representation for

Structural Dynamic Analysis," AIAA J. V. 13, n. 8, 1975.

5. R. R. Craig and C-J. Chang, "Free-Interface Methods of

Substructure Coupling for Dynamic Analysis," AIAA J. V. 14,

n. 11, 1976.

6. Wang Wen-liang, Tu Ts'uo-jun and Chen K'ang-yuan, "Critique

on Modal Synthesis and a New Improvement," Acta Aeronautica

Et Astronautica Sinica, No. 3, 1979.

7. Chu Te-mao, "Modal Synthesis in Structural Dynamic Analysis,"

Naching Institute of Aeronautics and Astronautics, 1979.

62a



8. Chang Te-wen, "Free-Interface Modal Synthesis," Technical

Papers on Boats and Blimps, Chinese Research Institute of

Aeronautics and Astronautics, No. 1, 1980.

9. R. M. Hintz, "Analysis Methods in Component Mode Synthesis,"

AIAA J. V. 13, n. 8, 1975.

10. R. R. Craig and C-J. Chang, "On the Use of Attachment Modes

in Substructure Coupling for Dynamic Analysis," AIAA/ASME

18th Struct. Struct. Dyn. & Materials Conf., 1977.

11. Chang Te-wen and Liu Kuo-kuang, "Modal Synthesis Including

Analysis of Vibration and Response of Rigid Substructures,"

Research Papers of the 1980 Annual Conference, 1980.9,

Chinese Society of Aeronautics and Astronautics, Shanghai,

Technical Papers on Boats and Blimps, No. 1, 1980.

63



-~~~ -

Abstrict

S,.vera .... .. [- h .' r s .te
: amcrica! results which demonstra tud,
stiffening of 8-node and 12-nodc uiadr:-
:ateral iso~arametric Qlemcnts whCn
distorted 8-nodt or 12-nocj qadrilateral
isoparametric element is sicnificant. Tht
results arc not as good as th-ose obta:ne_
by usin,: quadrilaterai elCmCnt conslst:n;
or two cr four linear strain trino
The results obtained by distorted elnts
are essentially consistent with thos(.
obtained by undistorted elements if 9-roDL
element is used as cuadrilatera: isorara-
metric element and Lagrange polynomials as
interpolation functions. Numerical results
show that 9-node isoparametric element is
superior to 8-node isoparametric element,
12-node isoparametric element and quadri-
lateral element consisting of two or four
linear strain triangles.

I. Introduction

Isoparametric elements are a fairly important type of

finite elements. The usually adopted shape functions belong

to the family of "Serendipity" functions [1]. In recent years,

several authors have demonstrated the stiffening of 8-node and

12-node quadrilateral isoparametric elements when the elements

are distorted from a rect,-.gular shape, which has an adverse

Received in February 1982.
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effect on the computed results. Stricklin, et al. [2] used a

cantilever beam as example to compare the effect on computed

results produced by five different element configurations.

When the shape of the quadrilateral is severely distorted

from a rectangular shape, the results obtained by using

8-node elements are not acceptable. The results also show

that it is better to use the quadrilateral element formed by

two or four linear strain triangles than the 8-node quadri-

lateral isoparametric element. Backlund [31 used 2 x 2 Gaussian

integration points on the 8-nodL quadrilateral element and

recalculated the example given in [2]. The calculations show

that the results are slightly better than those obtained by

using the 3 x 3 Gaussian integration points, but no substantial

improvements have been achieved. The same problem was taken up

by Gifford [4], using 12-node quadrilateral isoparametric

elements to give the results for the maximum tip deflection

and maximum stress as computed with 3 x 3 and 4 x 4 Gaussian

integration points. Numerical results show that, even if 12-

node elements are used, when the quadrilateral is distorted,

the results are still not as good as those obtained by using

quadrilateral elements formed by two or four 6-node triangles.

Through numerical examples, we have shown that the 9-node

quadrilateral isoparameti * elements with Lagrange polynomial

as shape function are not only preferable to 8-node isopara-

metric elements, but also preferable to 12-node isoparametric

elements as well as quadrilateral elements formed by 6-node

triangles. As the computed results are not very sensitive to

changes in the shape of the quadrilateral, the 9-node quadri-

lateral isoparametric element is a superior isoparametric element.

II. Computed Examples and Results

The shape function and computation procedure for 8-node

and 9-node quadrilateral isoparametric elements have been
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given in Refs. [1] and [5], and will not be repeated here.

We give below the results of the computation carried out on

these two examples.

Example 1: Figure 1 shows a cantilever beam [2-4] in /37

five different element configurations, under load P. The com-

puted results given in Refs. [2-4] and the results we obtained

using 8-node and 9-node elements in the computation are collected

in Tables 1 and 2.

To examine the effect of mesh configuration and the

accuracies of the two kinds of isoparametric elements under

other load conditions, we list in Table 3 the numerical results

of using 8-node and 9-node isoparametric elements in the cal-

culations performed on the same beam under a moment M.

o iceo, P M

10010.
50. 000

50.0 =

P= lo0

33.33,0. 66.660, M=10000

75.10,

S3.33.10.

0 16.67,0, 50, 0.

Figure 1. A cantilever beam and element configuration.
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Table 1. Tip deflection of a cantilever beam under load P

as shown in Figure 1 (v = 0.04032 by beam theory

including shear strain).

Key: 1) Mesh; 2) Quadrilateral formed by triangles [2]; 3) Two

triangles; 4) Four triangles; 5) 12-node quadrilateral [4];

6) 8-node quadrilateral; 7) 9-node quadrilateral.

3x3 4x4 X 3 2 22 3 3 2x2

0.03054 0.03758 0.03101 004023

1 0.03001 0.03087 0.03761 0.03761 003051 0.03755 0.03100 0 040:7

0.03054 0.03758 0.03101 0 04023

0.03720 0.03871 0.03817 0 04023

2 0.03719 0,03804 0.03875 0.3875 0.03721 0 0387t 0 038;6 0 04027

0.03720 0 03871 0 03817 0.04023

I 0.03877 O 03929 0.03937 0 04023

d 0.03871 0.03935 0.03926 0.03926 0.03876 0.03928 0.03937 0 04027

0.03877 0.0392t 0.03937 0 04027

0.00644 0.01440 0.03165 0 04434

0.03165 0.03202 0.01970 0.01542 0.00547 0.01463 0.03164 0.04194

0.00643 0.01456 0.03167 0 04434

0.01766 0.03026 0.03326 0 042-2

6 0.03824 0.03845 . 0.03165 0.02928 0.01773 0.03112 0.03326 0 04131

6.01760 0 03117 j .03326 0. 0426

Table 2. Peak stresses at the root of a cantilever beam under /38

load P as shown in Figure 1 (±600.0 by beam theory).

Key: 1) Mesh; 2) 8-node; 3) 9-node; 4) 12-node (4].

8 IY A~ 9 x IF S 121AC 4 i2VAC 4

1 I :±600.0 :600.0 1600.0 ± 600.0

2 ±600.0 t600.0 600.0 t±600 0

S ±600.0 t 600.0 100. ±60.0

4 +262 9 +605.6 +668 2 .490.2

- 142.2 -614.8 - 394.5 -305.2

440.3 + 603.8 +859.2 + 7:2 7
-385 6 -09. - 602 0 -565.1
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Table 3. Tip deflection and peak stresses of a cantilever beam

under a moment M as shown in Figure 1 (2 x 2).

Key: 1) Mesh; 2) Tip deflection; 3) Maximum stress; 4) 8-node;

5) 9-node; 6) Beam theory.

0 0373S 1 0 0 1'1 0
1 0 05728 0. 0 :6..

0 )i35 0 0 60.0±

0 0 0 0,000
2 0 AI4 A0 0-+±000 -00.0 6 0

o 03518 0 06C0 0

0 053 q99 0 0 
3 0 0589- 0 0,, 00 0 06000 ±600 0 +600.0 -.600 0

0 0i 'j 0 06")0

0 02138 0 01 ,00 +245 0
4 0 0?97 0 r, )')0 -89.3 1600.0

002572 0 r1000

0 04723 0 09000 4580 ±600.0
0 04713 0 0O000 -4045

0 4404 0 

0000

Example 2: Figure 2 shows a cantilever beam in two element

configurations, under load P or under a moment M. The results of

computation using 8-node and 9-node elements are given in Table 4.

The peak stresses in the table have been obtained by calculations

using the method given in Ref. [6].

Figure 2. A cantilever beam and element configuration.

0,. 40, 100.40, P

1100. 0.

0,'0, 100. 0, 200, 0,

E -21000
v,0.3

100.40, P - 120

/01- 3200

1000 ., 2000,
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Table 4. Tip deflection and peak stresses of a cantilever beam /39

under load P or moment M as shown in Figure 2 (2 x 2).

Key: 1) Load; 2) Mesh; 3) Tip deflection; 4) Peak stress at the

root; 5) 8-node; 6) 9-node; 7) Beam theory; 8) Concentrated

force P; 9) Moment M.

'& 9 __Aai 6 A4P 0W
2.8983 2.9320

2.9030 2.9405

2.9069 2.9405 : 92..1 : 90.64
2-9030 2. 9 405
2.8983 2.9320

t lt P - -- 2.9486 ±9000

2 8575 2.9315
2.8469 2.9231

2 2.8265 2.939.
2,8449 2.9228 -b4.83 - 90 92

2.8547 2.9301

5.6696 5.7114
5.6610 5.7109

1 5.6656 5.7014 122. 6 120.23
S. C640 5.7109
5. 66 C 5.7114

-- -- 5.7143 z 1200

5.6916 5,7176
5.6?53 5.7098 116.9 1200

2 5.6768 5.7111 105 -120 4
5.68F7 5.7087
5.6917 5.7176

III. Discussion and Conclusion

The results of our computation show that it is preferable

to use 2 x 2 Gaussian integration points for 9-node isoparametric

elements. This is in agreement with the results of computation

given in Refs. [3-51 for 8-node and 12-node isoparametric elements.

Although isoparametric elements may have any shape at all,

rectangular shapes are preferable. The greater the deviation

from the rectangular shape, the larger the error in the computed

results. This phenomenon is especially apparent in the 8-node

and 12-node isoparametric elements of the Serendipity family,

while it is not noticeable in the 9-node isoparametric elements.

For example, for the meshes 4 and 5 given in Table 1, the results

obtained by using the isoparametric elements of the Serendipity
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family have up to 60% error, which is totally unacceptable.

The corresponding error in the stresses is also very large.

On the other hand, when 9-node isoparametric elements are used,

the errors are small, only a few percent. This is a major

advantage of the 9-node element over the 8-node or 12-node
element.

It is an important subject to mathematically analyze the

effect of the shape of the elements on the results of compu-

tation. However, not much progress has been made in this

direction. In Refs. [8] and [9], the method of Taylor's series

expansion has been applied to the study of the effect of the

shape of the element boundary on the accuracy of high-order

elements, with the conclusion that when the elements have

curved boundaries, the convergence of the high-order elements

will be on the same order as that of the linear element.

However, Ref. [10] gives an explanation of this phenomenon

from a different angle of view, and disagrees with the above

approach. The elements used in our calculations are quadri-

laterals with the points on the straight sides located at the

positions of the mid-points. The results of our calculations

can not be explained from either of the above viewpoints.

The use of Lagrange polynomial as interpolation function

for regular elements (rectangles and parallelpipeds) was first

proposed by Argyris et al. [7]. Ref. [5] regards this kind of

element as being inferior to the isoparametric elements belong-

ing to the Serendipity family, which are currently very popular.

However, the results of our calculation clearly show that the

9-node isoparametric elements are superior.

We point out in passing that the degree of freedom of the /40

inner nodes of the 9-node elements can be eliminated via the

method of matrix reduction after the stiffness matrix of the

elements are formed. Thus, the interior capacity of computer

required by the total stiffness matrix is the same for 8-node
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and 9-node elements. Therefore, the interior capacity of

computer demanded by these two kinds of elements is basically

the same.
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APPLICATION OF LASER HOLOGRAPHIC INTERFEROMETRY /41

TO VIBRATION ANALYSIS OF

AEROCRAFT BEAM STRUCTURE MODEL

Chin Juan-ch'an

(Ch'inhua University)

Wang Shen-hsiao, Ch'en Kuo-ping, Shen P'ei-ch'ing

(Hongan Corporation)

Abstract

This paper describes how to make use
of laser holographic interferometry in
vibration analysis of aerocraft beam
structure models. Various vibration modes
for two kinds of simplified models (three-
beam and five-beam) of the same wing have
been photographed by means of laser
holography. Meanwhile, their natural
frequencies and node distributions have
been obtained from theoretical calculations.
The good agreement between the results
demonstrates that both the experimental
and the theoretical results are reliable.

The vibration analysis of three-beam
and five-beam models for an aerocraft wing
beam construction shows that some difference
exists between their five-order vibration
modes. This indicates the existence of
some difference in rigidity between the
simplified models. The simplification of
the simple three-beam models leads to some
errors, and the five-beam model proves to
be more trustworthy.

Received in June 1981.
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I. Introduction

The beam structure is very commonly seen in aerocraft

structures, especially in the wings of the aircraft. The

actual structure is usually a fairly complicated multi-beam

structure that needs to be simplified for the purpose of

computation or experimental studies. Suppose a reasonable

model has been obtained. It is required that this model be

simple and yet possess the mechanical properties (especially

such dynamic properties as dynamic stiffness) of the original

structure. In the process of simplification, however, it is

inevitable that there will be some difference in stiffness

distribution between the model and the original structure

because of the assumptions, simplifications and combinations

made. Hence, to test the validity of the model, it is
necessary to perform theoretical and experimental vibration

analysis on the model.

The objects of our study are the three-beam and five-

beam models of "-he wing. (See Figure 1.) These simplified

models have been obtained by idealizing the actual wing

structure. This structure is one of a beam with variable

cross-section. obviously, the three-beam model promises

simplicity in calculations and construction. Yet, how well

does it represent the original structure? This question can

only be answered by a vibration analysis. Thanks to the

development in the techniques and methods of calculation, it

is now possible to apply finite element analysis to the problem

and obtain the natural frequencies and node distributions of

the structure via accurate theoretical calculations. As early

as in the 60's, laser holograp~hic interferometry was shown to

be an effective tool in experimental vibration analysis.

However, at present, it has not yet been very widely applied.

We carried out experimental and theoretical vibration analysis

on the above two models with the purpose of finding a simplified

model that is reasonable as well as simple.
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II. Vibration Analysis by Laser Holographic Interferometry

vibration analysis by laser holographic interferometry is

an optical method that possesses many merits:

1. The distribution of vibration modes of the entire wing

model can be obtained in the same holographic picture. /42

2. The method has very "nigh sensitivity, with the spacing

between the fringes as small as 0.16 pm.

3. The measurement does not require contact with the wing

model, thus eliminating the effect of the additional

mass of the transducer when one is used.

4. The frequencies and vibration modes of various orders can

be accurately determined, and the measurement is not

affected by the frequency range.

Two commonly used methods of vibration analysis are the time-

averaged method and the method of double-exposure of frequency

glittering and pulses. As we are interested in obtaining the

node distribution, we used the time-averaged method. In the

reconstructed holographic image, the following relationship

exists between the fringes and the amplitude of vibration:

I~K2[ 2 7~A(,, Y)(cose+Oo) 1

In the above equation, J 0 is the first-order Bessel function,

A is the wavelength of the laser used, A(x, y) is the amplitude

of vibration at various points on the object, e0I is the illumina-

tion angle, i.e., the angle between the beam illuminating the

object and the direction of vibration, and e is the observation

angle, i.e., the angle between the line joining the object and

the photographic film and the direction of vibration.
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our method of steadying the specimen and other elements in the

optical path, preciF--y adjusted and stabilized the natural

frequencies and mona ed them with a piezoelectric crystal

chip on the oscilloscope, and carefully adjusted the optical

path to ensure an appropriate ratio of reference and object

light intensities (approximately 4:1). We were thus able to

obtain better quality holograms.

III. Experimental Results and Comparison with Calculated Results /43

The experimentally and theoretically obtained values of

the natural frequencies of the two models and their errors

are tabulated separately in Tables 1 and 2.

Table 1. Natural frequencies of three-beam model (Hz)

Key: 1) First-order frequency; 2) Second-order frequency;

3) Third-order frequency; 4) Fourth-order frequency; 5) Fifth-

order frequency; 6) Measured value; 7) Calculated value;

8) Error.

024 150 410 640 820 1155

-' ± ~144 4 384 6 51M8 735 7 91-9 6

f 37% 6.2% S7% 10 2% 1s2%

Table 2. Natural frequencies of five-beam model (Hz)

Key: 1) First-order frequency; 2) Second-order frequency;

3) Third-order frequency; 4) Fourth-order frequency; 5) Fifth-

order frequency; 6) Measured value; 7) Calculated value;

8) Error.

36 420 510 6* 1L0

128 9 403 3 479 . . 1U 9

S f 5 2% 4 5 9 9 7',
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our method of steadying the specimen and other elements in the
optical path, precisely adjusted and ;tabilized the natural

frequencies and monitored them with a piezoelectric crystal
chip on the osci]losLpe, and carefully adjusted the optical

path to ensure an appropriate ratio of reference and object

light intensities (approximately 4:1). We were thus able to

obtain better quality holograms.

III. Experimental Results and Comparison with Calculated Results /43

The experimentally and theoretically obtained values of
the natural frequencies of the two models and their errors

are tabulated separately in Tables 1 and 2.

Table 1. Natural frequencies of three-beam model (Hz)

Key: 1) First-order frequency; 2) Second-order frequency;
3) Third-order frequency; 4) Fourth--.:der frequency; 5) Fifth-
order frequency; 6) Measured value; 7) Calculated value;

8) Error.

A2i - 15 410 540 620 1155

t a 144 4 384 6 519.8 735 7 919 6

s * 37% 6.2% 3 7% 10 2% 15 2%

Table 2. Natural frequencies of five-beam model (Hz)

Key: 1) First-order frequency; 2) Second-order frequency;

3) Third-order frequency; 4) Fourth-order frequency; 5) Fifth-

order frequency; 6) Measured value; 7) Calculated value;

8 ) E r r o r . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Zli p s *
_ ~ , ) . .. 4 L

mP 3f 420 510 ,, 11;0

T' 128 9 403 3 4798 7 112 9

if Jr 5 2% 4 0% 5 9 % 9 1c 77
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The above data show that the measured values are very

close to the calculated values. In particular, the errors

for the first three orders are all within 6%. The calculated

values are generally lower than the measured values. This is

attributable to the fact that it is difficult to ensure comp_'.tC

steadiness of the root during the course of the experiment.

Figures 2 and 3 show the vibration modes of the twD

simplified models obtained by holographic reconstruction and thu

corresponding node distributions obtained by calculation with

the help of a computer. Comparison of these results shows that

the tendencies of the location and shape of the nodal lines

are the same for the two methods, except for the fifth-order

vibration of the three-beam model, whose reconstructed nodal

lines lie on the side beams while the calculated nodal lines

extend to the root region. There is also an appreciable dif-

ference in the measured and calculated frequency values for this

mode of vibration.

It is worth noting that the fifth-order vibration mode

is different in form for the two models. That of the three-

beam model is of the torsion form, while that of the five-beam

model is of the bending form. This difference is borne out by

both the measurement and the calculation. Analysis indicates

that there is a reduction in torsional stiffness associated

with the three-beam model. Hence, e-ren though this simple

model has the merits of ease of construction and simplicity of

calculation, it suffers from loss of fidelity in simulation and

dynamic stiffness, and therefore should not be used. Analysis

of the experiment shows that laser holographic interferometry is

an effective and direct method of vibration analysis.
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Figure 2. Three-beam wing moXL~l /44

!4

(a) Vibration modes by holographic reconstruction.

Key: 1) Third-order; 2) Fourth-order; 3) Fifth order.

//

/ /

7 / /

(b) Node distribution by calculation

Key: 1) Third-order; 2) Fourth-order; 3) Fifth order.
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Figure 3. Five-beam model /45

(a) Vibration modes by holographic reconstruction.

Key: 1) Third-order; 2) Fourth-order; 3) Fifth order.

7 ,,//
/ /

(b) Node distribution by calculation.

Key: 1) Third-order; 2) Fourth-order; 3) Fifth order.

Other comrades who also participated in this work include

Liu Ming-kuan, Chang Hua-shan, Chang Wei-pao and Liu Ch'un-yang.
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ON EXPERIMENTAL METHODS FOR DETERMINING/4

CRITICAL SPEEDS

Yan Litang and Li Qihan

(Beijing Institute of Aeronautics and Astronautics)

Abstract

In this paper the experimental methods
for determining the critical speeds of rotor
systems are investigated. The methods reviewed
here are the peak amplitude method and those
based on the characteristics of critical speeds,
such as the 90 degree phase lagging, and the
rapid change of phase angle.

The peak amplitude method commonly used
will introduce significant error in practice
if the shaft is out of round or initially bent,
or it is observed under the condition of
acceleration. Even if the tests are performed
at constant speeds the undamped critical speed
will still be much higher in case of heavily
damped rotors, while the method based on the
90 degree phase shift is more suitable for
these cases.

For the lightly damped rotors, which are
just the cases for many practical rotors, the
method based on the rapid change of phase angle
when passing through critical speed is more
applicable, since the rotors may be more safely
tested with acceleration which does not affect
the measured results of critical speeds by using
this method.

A modified Nyquist plotting procedure is
presented, in which a trial weight is put on
the node section of the higher order mode shape,
and necessary tests are made only at some speeds
near the critical. The vibration vectors with-
out error are then obtained and a circular polar
plot can be made. With the aid of the plot the
critical speed can be calculated in accordance
with the fact that the increment of speed is
nearly proportional to the increment of phase

Received in December 1981
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lagging angle in the vicinity of a critical
speed.

It is suggested that the first critical
may be experimentally determined at lower
speeds for the rotors with asymmetric stiff-
ness; these are the cases for many real
rotors. The sub-critical is measured in
this method and its double is then the first4
order critical speed. It is known that at
sub-critical the vibration frequency is twice
the speed, while at critical the vibration
frequency is equal to the speed. Therefore,
it is possible to distinguish the sub-critical
from the first critical by comparing the
measured frequency with speed. This method
is considered as a safer and simpler method.

Finally the feasibility of the method
to determine the critical speeds in the
static states of the rotors is described.

ABSTRACT

In this paper the experimental methods for determining

the critical speeds of rotor systems are investigated. We

have reviewed the peak amplitude method and the method based

on the 900 phase lag and the abrupt change of phase in the

vicinity of the critical speed. We have included a method

for determining critical speed that is a modification of the

vibration mode circle method that is usually applied to the

problem of flexible shaft balancing. A convenient and safe

method for determining the critical speed using low speeds

is proposed. Finally, the method for determining the criti-

cal speed with the rotor not rotating is discussed. The

principles on which the various methods are based are

elucidated with physical concepts and simple mathematical

expressions. The merits, demerits and range of application

of each method are examined.
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I. Introduction

The problem of the critical speed has long been recognized,

and has been extensively studied. Research on critical speeds

is usually centered on the method of computation and on ways to

eliminate damages associated with them. Not many studies were

made on experimental methods for determining critical speeds.

In fact, there are many situations where it is not possible to

take into consideration all the important factors when calcu-

lating for the critical speeds of rotors with sophisticated

structures. In these cases, the accuracy of computed results

is low. Hence, experimental methods for determining critical

speeds are of great significance.

The critical speed of the rotor bearing system refers to

the rotational speed of the rotor at which reasonance in the

transverse direction is caused by an imbalance in the rotor

that is undergoing steady rotation. Unless otherwise stated,

this is taken to be the critical speed in the absence of damping.

Rotating bearings are widely used in modern aircraft engines and

commonly used experimental equipment. Therefore, the rotors are

usually lightly damped, and not much difference exists between

the critical speed in the presence of damping and that in the

absence of damping.

Some aircraft engines use low-stiffness elastic bearings,

or have low-stiffness bearing structures. At the first- and

second-order critical speeds of such a rotor system, the bending

of the shaft is small. The distortion occurs mainly at the

bearings. Some papers refer to these two critical speeds as

rigid-body (modal) critical speeds. At the third- and higher-

order critical speeds, there are more pronounced bending distor-

tions of the shaft. These critical speeds are referred to as

bending critical speeds. Thus the vibration modes at the critical

speeds are differentiated. Others refer to rigid-body critical

speed as bearing resonance, and regard the bending critical speed
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as the true critical speed of the rotor. In these papers, the

bending critical speeds are differentiated by the ratio of the

amount of shaft bending to the total distortion, while several

values of the stiffness ratio (2KL3 /EJ) are used to differen-

tiate among the rigid-body critical speeds of shafts of uniform

cross-section on elastic bearings. In our opinion, it is more

appropriate to refer to the first- and second-order critical

speeds as rigid-body critical speeds than as bearing resonances,

the latter implying that only the bearings resonate while the

rotzr does not. In fact, the rotor-bearing system is one whole

system in which it is not possible to have local resonance of

the bearings only. Even if the amplitude of vibration of the

rotor is very small or zero, this should be regarded as a par-

ticular mode of resonance rather than simply a bearing resonance,

not to mention the fact that at the so-called bearing resonance,

even though the rotor is hardly bent, its vibrational displace-

ment or rotational angle is nevertheless appreciable.

We can go one step further in the generalization, and regard

the rotor, the bearings and the casing as forming one whole unit--

the engine. The critical speed is thus the rotational speed of

the rotor at which imbalance in the rotor causes a transverse

resonance of the engine. The vibrational modes are specified

by the amplitudes of vibration of the rotor, bearing, and casing.

One should not call those modes with large casing vibrational /48

amplitude casing resonance, and those with large rotor vibra-

tional amplitude, critical speed.

Resonances attributable to aerodynamic or other sources of

oscillation in the engi e may not be referred to as critical

speeds. It is not difficult to distinguish these from the

resonances arising from rotor imbalance. One only needs to

see if the resonance frequency is equal to the rotational speed.

Of course, occasionally, the frequency of resonance due to some

other source of oscillation may equal rotor speed, but such

coincidences are rare.
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II. A Commonly Used Method for Determining Critical Speeds--

the Peak Amplitude Method

In this method, the rotational speed corresponding to the

peak amplitude of a rotor undergoing steady-state motion is

taken to be its critical speed. The amplitude at the critical

speed is usually very large, and it is not possible to maintain

the critical speed. Therefore, it is common practice to take

measurements during acceleration or deceleration part the critical

speed, which inevitably affects the results. The critical speed

measured during acceleration tends to be on the high side, while

that measured during deceleration tends to be on the low side.

Hence, better results are obtained by taking the average of

these values. As acceleration and deceleration have their

associated difficulty ir control and measurement, and do not

have the same magnitude of effect on the rotational speed,

taking the average of their effects does not necessarily produce

accurate results.

This method of measuring the critical speed of a rotor

undergoing steady-state motion is applicable to rotors with

small imbalance or high damping only. At high damping, however,

th) results obtained with this method tend to be on the high

side even though the measurements are made under steady-state

conditions. Moreover, deviation from the cylindrical shape or

* initial bending of the shaft will also result in measurement

errors.

* III. Determination of Critical Speed from the Phase of Vibration

Many rotors have a phase lag of 900 at critical speed,

irrespective of the amount of damping. At low damping, the

phase lag undergoes an abrupt change in the vicinity of the

critical speed. This is the so-called "inflection" phenomenon.
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The critical speed can be determined from these two characteristics.

1. Determination of critical speed from rotor "inflection"

Because the phenomenon of "inflection" is equally pronounce.

whether the rotor is accelerated past the critical speed at low

acceleration or steady-state measurements are made in the vicinity

of the critical speed, the measurements are made with the rotor

being accelerated past the critical speed for the sake of convenience

and simplicity. The source of the reference signal is marked on

the shaft. The phase difference between the peak value of shaft

vibration and the reference signal is measured with a phase-gain

meter, and the region of rotational speeds in which the phase lag

undergoes an abrupt change is located, and the critical speed is

thus determined. If a phase-gain meter is not available, one can

record the vibration .,aveform on an oscillogram and study its

characteristics (Figure 1). The location of the critical speed

is determined by finding the speed for which the ratio of the

distance between the vibration peak and the reference signal to

the wavelength has the largest variation. In Figure 1

(a/b)3 - (a/b)2 is the largest; therefore, the critical speed

lies somewhere between n2 and n3. If, while passing through

the critical speed, the shaft undergoes an appreciable /49
bendinq distortion, then one can attach a sensitive strain

qauqe to the surface of the shaft alonq the direction of the

lenqth of the shaft and record the strain sianal c (Fiaure 2)

on an oscillogram. The rotational speed at which the averaqe

strain on the shaft incurs a chanqe in siqn for the first time

is the disired critical speed. As the rotor can be accelerated

past the critical speed, the problem of maintaininq the critical

speed is avoided. The method of measuring shaft strain has the

added advantaqe of eliminating error due to deviation of the

shaft from a cylindrical shape or that due to initial bending.
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Figure 1. Oscillogram of different Figure 2. Variation of strain

speeds in the vicinity of n cr for on the shaft passing throuagh

determining n cr . n cr' showing the phase change.

2. Determination of critical speed from the 90C phase lag

The phase lag is determined by measuring the angle between

the direction of the force causing imbalance and that of the

steady-state vibration. The rotational speed at which this

angle equals 9Q0 is the critical speed. There are many ways of

measuring the direction of the imbalance vector, as discussed

in detail in studies related to rotor balancing [1] . The direction

of vibration can be determined by making a reference mark on the

shaft and using a phase-gain meter for the measurement, or by

recording and studying the oscillogram. Because acceleration

and deceleration past the critical speed will cause a corresponding

increase or decrease in the phase lag [2), this method should be

used only for steady-state measurements, and is applicable to

relatively heavily damped rotors. As the phase lag is determined

from measurement of the direction of the vibration vector, the
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accuracy of the result will be affected by deviation of the

shaft from the cylindrical shape.

3. Determination of critical speed using the vibration

mode circle

We illustrate below the principle of the method of vibratio:-

mode circle using as example a rotor of single concentrated mass.

The equation of motion of this rotor is

(I)
Mz bz- kZ=Fc"'

where m is the concentrated mass of the rotor, Z is the radius

of motion of the rotor, b is coefficient of viscous damping,

F is the imbalance force mw2E, c is eccentricity of mass, and

k is the transverse stiffness coefficient at the location of the

concentrated mass. The steady-state solution of the above

equation is given by

where ~ b/2mw c2 and = k/m is the critical speed. Writing

Z as

Z = (x + iy)e
i -t

one obtains

L- ,V -4 L (3)

For a given rotor, pmc and c have given values, and at a fixed

rotational speed, the above equation describes a circle. When

is varied, the figure is no longer a circle, but closely

approximates a circle. If we take a few points - c' the curve

obtained should be close to a circular arc. Using this arc to

complete the circle will enable us to obtain a circle closely

approximating the vibration mode circle for = '
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As there are other factors that need to be taken into

consideration in practice, the plot of the measured vector Z

does not yield accurate results. Instead, we make use of three

vectors in the measurement. First, the vibration vector A ix

measured for a given rotational speed n . Then a trial weight1

is added at a chosen cross-section, and the vibration vector Az

is determined for the same rotational speed. Therefore, the

vibration vector due to the imbalance caused by the trial weicht

is given by

A~ A~A.(4)

If the error vector is the same in both measurements, then it is

eliminated in the process of subtraction, and the A obtained ism
a very accurate quantity. The error vectors of deviation of

shaft from the cylindrical shape and of initial bending are

constant quantities. If the trial weight is placed at the

node of a higher-order mode of vibration then the error caused

by the higher-order vector is also constant. We illustrate this

method with the following example.

Take an angular position in a plane perpendicular to the

shaft as the reference direction specified by 0'. This is the

direction in which the trial weight is applied. Obtain the A

vectors On1 , On2, On 3 and On4 for the four rotational speeds

n, n2 f n3, and n4 in the vicinity of the critical speed -c"

Plot these vectors, and make a circle passing through n,, n2,

A 3 and n4 (Figure 3). The rotational speed corresponding to

point C is the desired critical speed. ai is the phase lag at

n. . As the phase laa can be regarded as having a linear

relationship with rotational speed in the narrow region in the

vicinity of the critical speed, especially for lightly damped

rotors, we have

-, a-90--= Y, 
(5)
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From this, the critical speed is calculated to be /50

Here the speeds at which the measurements are made need not be

equally spaced, so as to avoid the critical speed. If i
contains error vectors of constant magnitude, then the circle
maintains its shape while it is shifted in position. If XA

contains other errors, then the figure will deviate slightly

from the circular shape, and the critical speed obtained contains

a slightly larger error.

Y1 F.
TTo

Figure 3. Illustration of plotting A circle to determine n
m cr

IV. Method for Determining Critical Speed at Low Rotational

Speed

For a rotor with asymmetrical stiffness under the action of

the gravitational force, there exists a sub-critical speed, i.e.,

the amplitude becomes very large at a rotational speed equal to

half the first-order critical speed. Hence, it is possible to

obtain the critical speed by measuring the sub-critical speed

and multiplying the result by 2. Unevenness in the wall thickness

of the shaft and asymmetry in the tightness at the connections are

some of the factors giving rise to asymmetry in stiffness. In

practice, these factors are inevitable, and such rotors will

incur displacements at the frequency of 2w under the action of
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the gravitational force. This is equivalent to a rotor with

I; uniform stiffness under the action of an oscillating force of

frequency 2_. The frequency of the resonance caused by this

force is equal to c1 The resonance occurs at a rotational

speed of _ cl, and is not accompanied by the phenomenon of

"inflection." These facts can be used to distinguish the sub-

critical from the critical speed (Figure 4). Does there exist

a sub-critical speed for the second-order critical speed? The

second-order speed arises from the dipole moment. Only when

the relation k k k1  holds for two locations on

the shaft separated by a relatively large distance, which is

equivalent to the action of a dipole moment varying at the

frequency of 2., can there be a second-order critical speed.

Such situations are rarely encountered, but are not absolutely

impossible. First- and second-order sub-critical speeds can

also arise from static or dynamic imbalance. However, because

of the small amplitudes, these are difficult to measure. The

sub-critical speed occurs at a low speed, and the vibrations

associated with it are small. Therefore, this method can be

applied in steady-state measurements to find the critical speed

that is higher than the operating speed, and hence has a definite

superiority over other methods.

Figure 4. Schematic oscillogran at sub-critical speed, showing

the vibration frequency is double the rotational speed.
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V. Feasibility of Determining Critical Speed with the Rotor

not Rotating

The effect on the natural frequencies of the moment of

inertia of a rotor that is not rotating but undergoing bending

vibration in a plane is different from that of the mass spin

moment of a rotor undergoing synchronized rotation. The stiff-

ness of the connections of a rotor made up of many parts that

operate under the conditions of high speed and high temperature

is different from that of a rotor that is not rotating and is

at normal temperatures. Hence, the transverse resonance frequency

of a rotor vibrating in a plane at normal temperatures is in

general not equal to its critical speed. However, in cases where

the moment of inertia is very small, and where the stiffness of /51

the connections of the rotor does not vary very much with speed

and temperature, the transverse resonance frequency can be a

good approximation to the critical speed. Although fairly large

errors sometimes result from determining the critical speed by

measuring the transverse resonance frequency of a rotor vibrating

in a plane, this method is nevertheless valuable as a means to

obtain a rough estimate of the critical rotational speed because

of its simplicity.

Conclusion

In this paper we have discussed the merits, demerits and

range of applicability of various methods of experimentally

determining the critical speeds of a rotor.

In cases where neither the imbalance in the rotor system

nor the damping is large, the critical speed can be accurately

and conveniently determined by acceleration past the critical

speed and making use of the "inflection" phenomenon.
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For the lightly damped rotor with large imbalance or pro-

nounced errors in shaft shape, or if there is mixing in of a

higher order vibration, one can use the method of the vibration

mode circle, and eliminate the effect of constant error vectors.

For the heavily damped rotor, with the exception of the

case where there is crowding of several orders of critical

speeds, the critical speed can be determined from the characteristic

of a 900 phase lag between the direction of the imbalance and the

direction of steady-state vibration.

In the case of a rotor with asymmetrical stiffness, where the

sub-critical phenomenon is pronounced, the critical speed can be

determined from the sub-critical speed measured under the condi-

tions of low-speed steady-state motion or low acceleration. The

special merit of this method lies in the low speeds used.

The critical speed of those rotors with small moment of

inertia, in which the stiffness of the connections will not be

greatly affected by high temperatures or high speeds, can be

determined from the resonance frequency of the two-dimensional

bending vibration of the rotors.

We have repeatedly used all of the above methods except the

method of the vibration mode circle, and have accumulated a fair

amount of experience.
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THREE-DIMENSIONAL ELASTOPLASTIC FINITE ELEMENT ANALYSIS /53
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(Chilin University)
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Abstract

It is important but also difficult to
study three-dimensional elastoplastic
finite element analysis of aeroengine
structures, which have a complex configura-
tion and various heavy loads. The stress
distribution in the engine structure is a
necessary datum for fracture mechanics and
fatigue damage. For this reason the stresses
in elastic and plastic zones deserve to be
taken into account in many engineering fields.

In order to ensure adequate accuracy, a
three-dimensional 20-nodes isoparametric ele-
ment is selected and a straightforward
numerical solution method--an efficient
method of frontal solution--is adopted.
For saving computational time and reducing
main memory space, a cubic fourteen points
Gaussian integral is applied. Moreover,
with the aim of economizing man-power and
gaining quite high accuracy the cubic finite
element meshes are automatically generated.

The programming is also discussed in
general, including constitutive equations,
solution algorithm and strategy for solving
large problems. Practice has shown that the
program written by the authors is very
advantageous to solving elastoplastic problems.

Two typical specimens for experimental
investigation are provided: a notched thick
plate in which the local stresses are higher

Received October 1981
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than the nominal applied stresses, and a
thick plate with a central hole in which
the stress distribution along the inside
edges is also higher than that of the
other places. The theoretical analyses
and the experimental results coincided
favorably.

I. Introduction

Recently great interest has been shown in the problem of /53

elastoplasticity in this and other countries, and a lot of

research has been carried out on this subject. The appearance

of finite element analysis and the use of computers have made

possible great progress in the study of elastoplasticity, so

that improved and more nearly accurate knowledge has been

obtained about structural design limits, plastic stress fatigue,

extension of the tip of a crack, etc.

The increment equation for elastoplastic finite elements

as obtained from the variational principle [1, 4, 51 can be

solved by the method of initial load, by varying the stiffness,

or by the method of first- or second-order self-rectification [2].

Accurate results can be obtained by taking Prager's effect into
consideration, while using various theories [6, 7, 9] on hardening

in the computation, and by step-wise linearization of the non-

linear equations, along with continual modifications.

The structure of the various complex parts of an aeroengine

can be realistically analyzed only by means of three-dimensional

elements. The stress distribution is very complicated, and the

equations are of high orders, hindering the task of elastoplastic

analysis. With these points in mind, we have made improvements

both in the design of the program and in the computational

method, so that problems of a medium scale can be handled on

the FELIXC-256 machine.
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II. Fundamental Equations

The well-known equation of elastoplastic stress is

S} = (~D~*) {£e (1)

In the equation, [Dep  [Del + [DP ] , [De, is the constant-

coefficient elasticity matrix, and [DP ] is a function of stress.

Therefore, the stress {a} and the strain {c} are non-linearly

related. [DP ] is expressed as [1]:

(D'3 = ac ) 0 (2)

12) raf ) I af I

Under the condition of combined load addition and removal, it

is appropriate to use the increment theory in the description

of the structural equation and the computation of circulative /.54

stress. The increment form of Eq. (1) is

(do} = (D'1) (de} 
(3)

Computations on the hardening materials used in engines

are usually performed with the help of various hardening models,

such as the isotropic hardening model, the moving hardening

model, and the modified hardening model. Fig. l(a) shows the

. pdaj(Z)

.71 at all2 *8

Caa

Figure 1. Three hardening models

Key: 1) Curved surface representing added load; 2) Curved surface

representing submission. 98



isotropic hardening model. The curved surface representing sub-

mission expands outward uniformly in the plastic flow, and main-

tains its original shape, orientation and location of the origin.

Hence, the submission function on this surface is given by:

f (c,)=K=F(W,) (4)

In the above equation, K is a certain constant, and F(W p) is

plastic work. This model cannot be used to compute Prager's

effect, but is easy to apply. Figure l(b) gives the moving

hardening model [6], in which the shape and size of the sub-

mission surface remain the same, but the origin is displaced

along the direction of the plastic strain increment. Prager's

effect can be taken into account here. The submission function

of this model is given by

f (a,,-aj)=K'=const (5)

where a.. denotes the amount of displacement of the origin in1]
the various directions, and da.. = cdP. Figure l(c) shows13 Jj*
the model [7) obtained by modifying the moving hardening model.

The contortion of the curved surface can be taken into account

with this model, where the plastic flow is in the direction of

the sum vector CP of the increment vector OC of the origin and

the stress vector OP. The submission function of this model is

f (ai,-a,,)=K' (6)

In the equation, K is not a constant, and da..j = (... - aij )dp, dp > 0.

The non-linear increment equation derived from the varia-

tional principle can be written as

(K'j{Ab}={AF}- (AR )  (7)
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In the above equation, JAR) is equivalent to a kind of virtual

load. It is the stress-strain function in the previous iteration,

i.e.,

(AR) =f - BJ7CL'j (Ae~dv) (8)

Thus we see that every time Eq. (7) is solved, the fLR} in it is

always related to the stress-strain increment.

It is in general considered appropriate to use three-

dimensional 20-node isoparametric elements to analyze a three-

dimensional structure. However, the three-dimensional problem

requires a large interior capacity of the computer. The computation

is time-consuming, and is complicated by the iterative procedure

applied to the solution of the nonlinear equations. Hence, we

have adopted the following measures:

1) Reduce the number of integration points from the usual 27

to only 14. It has been shown via examples [18] that the

results obtained by the two methods differ only by about

1 part in a thousand, while the latter cuts computational

time to one-half of that required by the former.

2) Improve the method of frontal solution. The use of the

method of frontal solution enables one to fully utilize

the peripherals of the machine. When solving for the

stiffness coefficient, one can store most of the data on /55

magnetic disk, leaving in the interior only a small amount

of information immediately needed in the computation.

Thus, the elasticity and plasticity can be handled side

by side, and whether the method of initial load or that

of varying stiffness is employed, only a small amount of

variables needs to be input.

3) Calculate the stress at the Gaussian points. It can be

shown that the most accurate values for stress are those
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obtained at these points. As the order in which the material

enters into plasticity is also calculated at these points,

it is not necessary to calculate the stress at the nodal

points. We have thus eliminated the computation required

to extrapolate the stress from the Gaussian points to the

nodal points.

4) The finite element mesh information is automatically

generated. This method of automatic information gene-

tion is applicable to all complex three-dimensional

structures. All one needs to do is to input a few

characteristic values of the shape, and the mesh info

tion of the element can be obtained by applying the frontal

solution method to the sequence number of the elements and

the nodes and the coordinates of the nodes. This information

is sequentially recorded on the magnetic disk.

III. Results and Analysis

To examine the reliability and accuracy of our method, we

did experiments -rn the plasticity of two typical types of thick

plates, and carried out many calculations.

1. Experiment and calculations on a thick plate with a

hole in the center: The dimensions of the plate and the stress-

strain curve for a point at the edge of the hole are shown in

Figure 2. The material used is Lyl2-CZ. The computed points and

the experimental points all fall on a smooth curve. When the

symmetry of the structure is employed in the computation, a

quarter-model is used, which is divided into 32 solid isopara-

metric elements, with a proper increase in density near the

edges of the hole.

The points of measurement are taken to be on the Gaussian

points of the elements as much as possible. To ensure the accuracy
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of the positions of the r'z.iwts of measurement, the symmetry
of the strucLure is employed to disperse these points in the

corresponding regions on the opposite sides.

Figure 3 gives the diagram of extension of the plastic

region under the conditions of the various stress ratios c m/ s

as obtained separately from computation and experiments. As

the stress is concentrated at the edges of the hole, submission

starts when um/as = 0.59. With the increase in load, the computed
diagram of extension of the plastic region agrees completely with
that obtained experimentally. In the figure, "." denotes a

calculated point or an experimental point.

0.6 F 1 4

0.2

Figure 2. A stress-strain curve of a given point on the edge

of a central hole in a plate.

Key: 1) Average stress on the smallest tangential surface;
2) Experimental point; 3) Calculated p'int.

2. Experiment and calculations on a thick plate notched

on two opposite sides: The dimensions of the plate and the

experimental curve for a point on the edge of a notch are shown
in Figure 4. As above, a quarter model is adopted, and 32

elements are taken. Application of the strain gauge and other

procedures are the same as for the first example. The points

on the edges of the notch go into the state of plasticity first
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when the stress ratio is 0.59. Figure 5 shows the extension

of the region of plasticity for various stress ratios ( m/:s).

The calculated curves agree extremely well with the experimental

curves. The results are very satisfactory.

In this country, experiments on elastoplastic stress-strain

measurements have mainly been limited to the two-dimensional

problem. Little work on the three-dimensional problem has been

done. To ensure the reliability of the data, we attack the pro-

blem in steps: solve for elasticity - solve for plane elasto-

plasticity - do experiments on plane elastoplasticity - compute

for three-dimensional elastoplasticity. After these reliable /56

experiments and calculations have been performed, the results

can be used as a basis for studying the complex problem of engine

structure using our method.

The methods commonly used in this country for measuring

plastic strain include the method of microscopic study of

hardening [17], the grating fringe method and the use of a

strain gauge. The method of microscopic study of hardening

consists of the determination of stress-strain values from

measurements on hardening of the plastic region with the help

10

ones ~ ~ ~ ~ ~ ~ i Nil tlt iha eta oe

Fie 3. omparon oftrane intocplastedcurves wit thExperimentalut

(for various m/ s); 3) Computed results (for various aOm/0 s).
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Figure 4. A stress-strain curve of a given point on the edge

of a notch in a thick plate notched on opposite sides.

Key: 1) Average stress on the smallest tangential surface;

2) Experimental point; 3) Calculated point.

,2 . 0 -_

- o ( ~,o, (,)

Figure 5. Comparison of the calculated curves with the experi-

mental ones of a notched plate.

Key: 1) Point of entrance into plasticity; 2) Experimental

results (for various am/as); 3) Computed results (for variousI.~ m/0 s )•
m /as

of an electronic microscope. This method is not realizable in /57

ordinary laboratories, because of the equipment required and the

amount of time and difficulties involved. In the grating fringe
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method, one measures by means of optical photography the large

plastic deformation of a metal during the process of punching

and hot crushing. This method is more suitable for measuring large

plastic deformations. Neither of these two methods can be

conveniently applied to measurements on small local plastic

deformations.

Based on our past experience with point-type strain gauges

(I. x 1 mm) and careful investigations, we have chosen specially

designed point-type strain gauges made with copper-foil wires.

Before applying the strain gauges to the specimen, the positions

of the calculated points are first located. The specimen is washed

and dried, and the strain gauges are attached to it by means of a

metallic adhesive. Care is taken so that the specimen is not

exposed to heat or moisture, and measurements are taken right

after the strain gauge is attached.

The experiments are performed on a 10-ton universal testing

machine. The load is evenly increased after the material enters

into plasticity. The instruments used are the common pre-adjusted

balance box and static resistance strain indicator. The value of

strain is recorded after each addition of load. Because measure-

ments have to be made at a large number of points (in both the x

and y directions), the data have to be recorded by many people at

the same time so as to prevent data drifting. Repeated tests

show that accurate results can be obtained for regions with small

plastic deformation. When the plastic deformation is large, the

strain gauge itself may enter plastic deformation, and in some

cases come off the specimen. Therefore, we see that the method

employed depends on the material being tested and the range of

plastic deformation involved.

3. Three-dimensional extension of the plastic region on

the tip of a type I crack: The rule of extension of plastic

regions is a key point of interest in the study of plastic

breakdown criteria. We choose the three-dimensional model
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shown in Figure 6. Its dimensions are 2b x 2c x t =15 x 15 x 8 (mm).

The material is Lyl2-CZ, and the physical parameters are the same

as those given in example 1.

Y Y 2.5 0.5

Y O's

() (b)

Figure 6. Three dimensional calculation model of a type I crack.

Making use of the symmetry of the structure, we carry out

calculations on one-eighth of the model. The mesh of the elements

is as shown in Figure 6(b). The crack has length 2a = 5 mm, and

is under a uniform tensile stress. The mesh is decreased toward

the tip of the crack, with the smallest side measuring 0.5 mm.

The finite element meshes are automatically generated by means

P of a geometric series. In all, there are 60 elements and 424

nodes. The elements have regular shapes, and the ratios of their

length, width and height are within the allowable range of values,

so that desirable element characteristics are ensured.

Figure 7(a) shows the extension of the plastic region along

the direction of the thickness of the plate. The curves extend

from the center to the sides, and have a flaring shape. With

increasing load (a m/a numbered 1, 2, 3 and 4), the plastic

region gradually goes deeper into the plate. Figure 7(b) shows

the extension of the plastic region on the surface of the thick

plate near the tip of the crack. It can be seen from the figure

that the plastic region on the surface of a three-dimensional plate
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is very similar to that of the two-dimensional problem. This is

due to the fact that the stress condition on the surface of the

three-dimensional plate closely approximates that on a plane.

Figure 7(c) is a typical solid diagram of a three-dimensional

plastic region. This plastic region is symmetrical with respect

tc the tip of the crack, and extends outward forming a "kidney"

shape. The size of the "kidney" shape undergoes an appreciable

change along the thickness of the plate.

We now compare the two-dimensional plastic region of the

type I crack with the three-dimensional result. The stress

field is known to be:

/58

44
I 2---0.457
I !III -o.541 _Z

(a) 4-0.625 (b)
(C)

Figure 7. Three dimensional extension of a plastic region.

Key: 1) Plastic region.

0 ~7i o4( .on

K - O-- 1 +sin 2- s ) (9)1 2,1r - 2 -

K, 0 0 30
(T Co--sn s i O s i (9)

s/ 2.-r 2 2

K,_ sin O -CO= 0 Cos-0
~v 2.-Tr sn 2 2 2

After the specimen enters into plasticity, the V. Mises criterion

is applied:
- I

(10)
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Substituting Eq. (9) into Eq. (10), we obtain:

r Cos 1 + 3n (11)
2 2 21

where r is a dimension of the plastic region. The "kidney"-

shaped region is obtained by plotting in polar coordinates,

as shown in Figure 8. When 0 = 00

11
,= (12)

I O 1.0

(a) (b)

Figure 8. Two-dimensional plastic region of a crack under uniform

tensile stress.

Key: 1) Tip of crack.

IV. Conclusions

1. The study in this paper is based on the study of plane

and axially symmetric elastoplasticity. This is why we have been

able to reduce the difficulty associated with the three-dimensional

elastoplastic problem and increase the reliability and accuracy of

the results.

2. In order to facilitate the application of three-

dimensional computation of elastoplasticity to practical engineering
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problems, we have adopted a series of measures to minimize

interior memory requirements,reduce computing time and increase

accuracy of computation. These measures may represent a break-

through in the study of the three-dimensional non-linear problems

of materials.

3. The present method and procedure can be used in the

computation of three-dimensional problems of different types

of complex structures, in calculations performed on parts with

complex load (bulk load, surface load and concentrated load),

and in finding the dimensions and rule of extension of the

plastic region of the tip of a crack (type I, II or III). To

realize the various objectives, one only needs to change the

automatic element partition and the characteristics of the load.

No changes need to be made when the method is applied to the

problem of plane and axially symmetric elastoplasticity.

4. When the necessary changes have been made, this method

can also be applied to the calculation of circulative loads and

the study of plastic fatigue.

5. Because of limited machine capability, we have not been

able to include the high-temperature effects (which require the

calculation of the temperature field). However, the present

method provides an important basis for the study of such high-

temperature effects on engine plasticity and deformation.
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AN AZIMUTH RATE INERTIAL NAVIGATION SYSTEM /61

Jen Szu-tsung

(Northwestern Polytechnical University)

Chao Yung-k'ang

(Paoch'eng Instrument Factory)

Abstract

A new type of inertial navigation system
combining the customary platform type with
the strapped-down type is put forward. In
this system the azimuth rate platform without
azimuth-stabilizing loop, coordinate resolver
and azimuth synchronizer is adopted. The
azimuth angles of platform and vehicle will
be obtained by an integrator from azimuth
rate signals measured by an azimuth gyroscope
supported on a horizontal gimbal. This type
of inertial navigaton system is suitable for
vehicles without large-pitching maneuver, such
as transports and aerodynamic and ballistic
missiles.

Operational principles of the azimuth rate
platform, mechanization equations, distinguish-
ing features of initial alignment, and calibra-
tion and compensation for drifts of gyroscopes
are discussed in this paper. Error propagation
characteristics caused by various error sources
for navigation positioning, velocity and
attitude are simulated on a digital computer.
Simplicity in platform structure, small volume
and weight, high reliability, possibility of
calibration and compensation for drifts of the
azimuth gyroscope are the distinctive advantages
of this inertial navigation system.

Moreover, by using a specific optical system
and referring to given azimuth angles of land-
marks and geographical latitudes, it is possible
to accomplish not only fast alignment, but also
calibration and compensation of horizontal
gyroscope.

Received in November 1981.
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I. Statement of the Problem and Brief Description of Platform

Structure

The inertial navigation and guidance systems widely used

in aeronautics, navigation and aerodynamic missiles are of

diverse kinds. Basically, however, these can be grouped into

two major types: the platform type and the strapped-down type.

The fundamental characteristic of the platform type system

is that it has a stabilizing ioop which, via a gimbal, separates

the inertial components from the motion of the vehicle. Thus

the inertial components operate under favorable conditions and

have relatively small dynamic ranges. In particular, the effect

of gravitational acceleration is reduced to a minimum in semi-

analytical systems working in the ground coordinate system, and

the relations used in the calculations are simpler, with the

result that the systems work with high accuracy. Nevertheless,

the platform type system has certain disadvantages, such as

complexity of structure, high manufacturing cost, relatively

large volume and heavy weight, and a large number of gimbals

and conducting rings that have an adverse effect on reliability.

The inertial components of the strapped-down type system

are directly attached to the vehicle. Thus the system has a

simple structure, high reliability, and high accuracy due to

the fact that attitude information need not be transformed via

electro-mechanical elements. However, such a system operates

under unfavorable conditions, especially when the vehicle under-

goes violent motions, with exacting requirements on the dynamic

range, and especially on the gyroscope. Moveover, because the

direction of the relative gravitational field of the inertial

components is constantly changing, compensation for error and

gravitational effect is a complicated process. This places a

higher requirement on computer wordlength, speed and memory

capacity. Thus, the accuracy of the strapped-down system

cannot be ensured without great difficulties.

113



For most vehicles, owing to specific reasons related to

structure and dynamics, there is a large difference between the

angular rate of the rolling motion and that of the course-

changing motion. For example, the rolling angular rate of an

airplane may reach or exceed 360 degree/second while its course-

changing angular rate is usually around 2-3 degree/second, with /62

a maximum value not over 10 degree/second. Hence, even if one

can say that an angular rate of 10 degree/second can be sensed

with a regular inertial gyroscope without great difficulty, this

is not the case with angular rates exceeding 360 degree/second.

In order to fully utilize the merits of the platform type and

strapped-down type inertial navigation systems, we present

below a new azimuth rate inertial navigation system that has a

simplified platform, reduced manufacturing cost and improved

reliability. The platform of this system does not contain the

azimuth-stabilizing loop, the coordinate resolver and azimuth

sychronizer. The azimuth angles of the platform and the vehicle

are obtained by an integrator from the azimuth rate signals

measured by an azimuth gyroscope supported on a horizontal gimbal.

When this type of system was first proposed in 1978, it was

named "strapped-down azimuth inertial navigation system" or
"semi-strapped-down inertial navigation system." Generally

speaking, to simplify the platform, one could also have a
'strapped-down pitching system' or even an "'azimuth and pitching

strapped-down system" that contains only one rolling-stabilization

axle. However, one needs to take into consideration the fact that

it is most advantageous to use this type of system in the semi-

analytical inertial navigation system with horizontal coordinates

that has low azimuth angular rate. This system is fundamentally

similar to "rotating azimuth," "free azimuth" and "floating

azimuth" systems. In addition, when the platform has an error

in attitude, the azimuth gyroscope is not completely "fixed"

to the vehicle, so that the term "strapped-down" loses its

meaning. Therefore, we switched to the name "azimuth rate" or
"analytical azimuth' inertial navigation system.
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The external features of the rate azimuth platform are as

shown in Figure 1. The platform can be made up of two gyro-

scopes with two degrees of freedom, or one angular rate with one

degree of freedom and one gyroscope with two degrees of freedom,

or one angular rate with one derree of freedom and two integrating

gyroscopes each with one degree of freedom.

Figure 1. Configuration of the azimuth rate platform.

Figure 2. Scheme of the azimuth rate platform.

Figure 2 is a schematic diagram of the azimuth rate platform

made of two gyroscopes with two degrees of freedom. The two

gyroscopes, 2 and 6, and the three accelerometers, 10, 11 and 15,

are mounted on the platform 9 to form the inertial measuring

component supported by the horizontal gimbal 17, which is, in turn,
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supported by stands attached to the vehiclc! 1. :.r

operating mode, the axle of gyroscope 2 is v'ertic.,:1ly _ ne ntcd.

It stabilizes the pitching and rolling axles of tht_* pXitform

via the corresponding amplifiers 3 and 14, and the corresponding

stabiliz'Lng circuits 16 and 13. The main axle of gyroscope 6 is

orthogonal to that of gyroscope 2, and brings about self-locking

via the amplifiers 5 and 8 in the feed-back loops. It operates

at the given rate. The feed-back current of the circuit around

the azimuth axle is a measure of the rate of change of the azimuth

angle. Thus, the azimuth angle can be obtained by passing this

signal through the integrator 4. As the support axle of the

horizontal gimbal is parallel to the longitudinal axis of the

vehicle, the angle-sensing component 7 can output rolling signals.

Similarly, the pitching signals are obtained from the angle-

sensing component 12. It is clear that the structure of the

platform is thus very much simplified. However, if the pitching

angle is expected to exceed 600, one needs to add to it an

external rolling loop and the corresponding stabilizing circuit

so that its operation will not be affected by the dynamic motion

of the vehicle.

If the azimuth rate inertial navigation system is not to be

used in vehicles that undergo full-cycle rolling and pitching,

then there will be no need to use conducting rings, and soft

conducting wires can be used in all parts of the platform. /63

This will result in a simplified platform structure, ease of

maintenance and improved reliability.

As the azimuth rate gyroscope operates under conditions

similar to those in a strapped-down system, it may have an

increased error in the assigned coefficients and increased non-

linearity as compared to the gyroscope in an ordinary platform

because of the large dynamic range. Nevertheless, the accuracy

of the azimuth gyroscope operation can be easily ensured because

of a reduced gravitational effect brought about by the shock-

proofing action of the horizontal gimbal, and the fact that the
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platform is basically horizontal. Furthermore, when tie ,p.1suL

rebalancing loop is used, additional errors due to transformation

can be avoided.

II. Mechanization Equations and Block Diagram of Structure

Choose the geographical coordinate system NWV, where N

stands for north, W stands for west, and V stands for the

skyward direction. As shown in Figure 3, the ideal platform
system XTYTZ T rotates about the vertical axis V, along with
the vehicle. The angle formed by XT and the meridian N is the

azimuth anq1e of the platform, a.

z.

V N

P

* 
.

L

Figure 3. Coordinate system.

The velocity of the platform relative to the earth is

determined by the following set of equations:

VI=I- (2Qzb+ - )V, + (2Q. +(O1 )Vz

Viz - (z(2Q, + 0 ) v + (29, + 4Y) V,- 0

where f. is the force as sensed by the accelerometer;

Q. is a component of the angular rate of the earth's

spin;
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is a component of the angular velocity of the rotation

of the platform relative to earth;

g is gravitational acceleration; and b denotes the

angular rate of the platform due to the motion of

the vehicle.

The computation for the navigation can be carried out with

the help of the relation that holds among the directional cosine

matrix [C], its rate of change, and _i. where the longitude ,

latitude L and azimuth angle a are the angles indicating the
relative orientation of the platform system with respect to the

geographical coordinates:

1 )=CC)[w) (2)

In the above equation,

fsin X sina SiXCo a Ws L es X

-snLe~s~cosa sin LoosXsin (3)
CC) -cos sina -o C Xcs a c3

-sl. sinX cs a sin Lsin X sin a
Cos L Cos a -- sLsina sin

/64

0 - 0 (4)

CDZ4 ~ 01O--O, CD 0

Obviously, w and w are the control quantities as calculated

by the computer from V and Vx and the curvature of the earth,
and they are applied to the gyroscope to keep it level; whereas

WZb can only be obtained by subtracting 0 Zb from the azimuth
rate feed-back control rate w cZb' i.e.,

Q(-DZj-D.Z-Q (5)

Furthermore, if one considers the height information from

atmospheric pressure and the information given by the vertical

accelerometer as forming one combined height system, then the
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mechanization of the azimuth rate inertial navigation system

can be represented by the block diagram shown in Figure 4.

* op
Az 

h

Figure 4. Block diagram of the azimuth rate inertial navigation

system.

Key: 1) Combined height system; 2) Curvature computation;

3) Computation of directional cosine matrix; 4) Platform;

5) Ai , G. --accelerometer and gyroscope of the corresponding
i

axle; ha--height information from atmospheric pressure;

e1p, un--pitching and rolling attitude information; X0 L0 --

initial latitude and longitude; £--angular rate of earth's spin.

III. Distinguishing Features of the Initial Alignment of the
Azimuth Rate Platforio

If imperfections in the structure are neglected, then the
azimuth of the ideal platform system will be that of the parked

vehicle. Thus, if the azimuth of the parked vehicle is specified

by means of some signs or marks placed on the runway or parking

area, then not only can fast alignment be achieved, but calibra-

tion and compensation can be carried out for all the gyroscopes.

In order to explain the problem, we need to set up the attitude
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error equations first. When the attitude error angles are

considered as small quantities, one obtains

V=. , -C;6 (6)

In the above equation, is the vector representing the attitude

error angle. WT = = Y 2Z s the angular velocity vector

of the ideal platform.

C0 is the attitude error matrix.C= 0 1

Sp = WC + WZPP + E is the vector representing the angular rate

of rotation of the platform system.

TWc = [Wxc W yc 01 is the control applied to the platform. /65

T T
= 0 0 QZbp] = [0 Ct'x - y + PZ ] is the angular rateZ b P Z PY X ' "

of rotation of the platform due to the vehicle. E = [Ex Ey 0 ]T
is the angular rate of drifting of the platform.

Substituting the appropriate relations into Eq. (6), one obtains

IF- 0.- Oco L ca a + ,..-in L + E ,,(7
TM.-Qsin L + cos Lsin a +E,(

0 = Q,- TvQcos L cs a + 9xQcos L sin a - Q sin L

This equation shows that the azimuth attitude error undergoes no

change during the initial alignment of the azimuth rate platform.

This clearly reflects the fundamental characteristics of the

initial alignment of the system. Eq. (7) can be represented

by means of the block diagram shown in Figure 5. The coefficients

Ki, K2 and K3 directly determine the dynamic characteristics of
the leveling process, and therefore should be carefully chosen

to meet the basic requirements of transit time and interference-

proofing.
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[ .. .&---J E - ".,,, , - -~1

Wx,(o) =E -Q eos Lcr a

(8)
cOo(oo) =E1 + QcosL sin at

From this, the azimuth angle is calculated to be

a.=tg' -*,( - - tg l m aF 9

Obviously, the drift of the platform has a direct effect on the

accuracy of the calculation of the azimuth angle. Assume that

a= cx + Ac, and let Xc( ) = £2 cos L cos c c and Wyc (o) = £2 cos L sin Cxc.
Then, one obtains from iEq. (8)

Qexi~sinAU~x(10)

x.o L eCS AGtE,

Multiplying the above equations by sin cx and cos cx, respectively,

and adding, one obtains the computational error of the azimuth

angle

A-Exinu+E,oa = E,,

A QoSL QcosL (ii)
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In the above equation, Ew = EX sin a + E cos a is the effective
westward drift of the platform. This conclusion is exactly the

same as that arrived at for other systems.

To calculate the compensation for the drift, one can first

calculate and compensate with respect to the angular rate of

the earth's spin, and then find the effective northward drift

to be

E .= ( ), . (12)

Projecting this onto the corresponding axle, one obtains the

compensation for the drift to be

E..= sa. -E .w.- E)sin awea. (13)

Ev= -E.sina. a 'Esinla.-E.cosa.sirc,,

The errors in the compensation thus obtained are given by /66

&E.--E.= - (Esiua.+ Ec.)sii (14)

E.= Y- E=- (Esia. + Evena.)aua.

i.e., they are dependent on the effective westward drift which

cannot be determined by measurements.

After the platform is leveled, QZb = sin L is a known

quantity. Given the gyration coefficient KG of the gyroscope,
one can find the compensation for the drift of the azimuth of

the platform from the equation I(w) = KG Zb - EZ relating the

controlling current and the azimuth angular rate:

iz = KGAgn L - (1c (15)

If the azimuth of the runway or certain landmarks is specified

beforehand, then the azimuth angle of the platform or the longi-

tudinal axle of the vehicle can be readily determined with a
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leveling device, a sighting device or some other special optical

system. Thus, not only can one achieve fast alignment, but it

will also be possible to calibrate the drift of the platform

along the horizontal axle. In fact, assuming the measured

azimuth angle introduced into the computer is a c, one obtains

from Eq. (8)

Bx=Uz.(oo) + QoiLo a - Qox Lena,
(16)

E,=Qco.(-)- QcmLsin a + QcoaLsina.

Obviously, if the azimuth angle contains no error, the control

quantity under equilibrium will be equal to the drift of the

platform. When the error in azimuth is Aa, one can obtain from

the relation ac = a + Aa the error in compensation for the drift:

-i.= Uwe LsinaAa

(17)

b , = cos I, cosAa

Of course, when the moment-measuring device has high accuracy

and the error of the platform structure is small, the compensa-

tion is equal to the drift of the gyroscope. It is clear that

the accuracies of the azimuth of the platform and the compensa-

tion for drift are mainly dependent on the accuracy with which

the azimuth of the longitudinal axis of the vehicle with respect

to the runway or landmark is measured, and on the accuracy with

which the azimuth of the runway or landmark itself has been

determined, plus the mounting accuracy of the platform with

respect to the vehicle. It can be seen from Eq. (17) that when

a = 0, 6Ex = 0; while when a = 900, 6REy = 0. These relations are

exactly the same as those that hold in the calibration of the

customary platforms. Furthermore, the accuracy of the latitude

introduced into the computer also has an effect on the accuracy

of compensation. For example, neglecting the error in latitude,

when L = a = 45', in order to keep 6EX and E y below 0.02 0/hr.,

one needs to ensure that the error in azimuth Au < 12'. This

shows that the present method has a definite practical significance
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in cases where the length of the runway or the distance between

the landmarks is not very short and where the accuracy of mounting

the platform on the vehicle is relatively high. Of course, if

the accuracy of the measurement of the azimuth angle can be made

to reach about 6' by means of optical methods, then one will be

able to compensate for platform drifts approximating 0.01°/hr.

IV. Computer Simulation of Navigation Error

In order to obtain a better understanding of the performance

of the azimuth rate inertial navigation system, we perform

computations using Eqs. (1) and (2) and the corresponding error

relations under the following conditions: the errors in the

calibration coefficients of the gyroscope and accelerometer

AK = AK = 1 x 10-; errors in the structure 6. = = 20";G a 1 1
gyroscope drifts ex =Y = 0.01 0 /hr., eZ = 0.02°/hr; deviation

of the zero position of the accelerometer VX = V = 1 x 10-4 g;

initial velocity VX 0 = Vy 0 = 0; errors in initial attitude

X0 = 5 x 10-4 radians; initial values of the theoretical

position L0 = 40'05, X0 = 116'36', a 0 = 45'00'; initial values

of the calculated position Lc0 = 40007
', Xco = 116038', ac0 

=

45*03'. We assume that the flight course is described by the

following parameters:

i (,/0 W 6
3.3 0 < t <30

2.0 30< 1 <60 0.0 0<I<60
1.5 60< 1 <240

a,= 1.0 60< 1 <200 CDZ 1

200< 1 <4284 0.0 240< 1 <4170

4284< <4464 -1.5 4170< i <4290

0.0 4290< t <4500[-3.3 1464< I 4500 13

I..'1) M
(W/o) M 0.0 0 < 1. <30

0.0 0< * <60 Vxtg3.5" 30< t <60

oz.Vz 60< t <240 Vtg].0" 60< 1 <490
0.0 240< t<4170 0.0 490< t <2970

WzO V 4170< f <4290 -VXtgf" 2970< I <4248

0.0 4290< I <4500 -J'.tg3" 4248< 1<4464
Ke:1)(n/e 2  0.0 4464< t <4500

Key: 1) (m/sec 2) (sec) ; 3) (degree/sec) .
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The most important results of the computation are shown in

Figures 6-10.

Figure 6 shows the flight course of the airplane from

taxiing along and lifting off the runway, through circling and

cruising, and finally to turning and landing, and the corresponding

calculated values. It is clear that the difference between the

calculated and theoretical values varies with different flight

directions and distances.

Figure 7 gives the time history of position deviation. It

can be seen that it undergoes an oscillatory variation. The
amplitude of the error in longitude AX is larger than that

of the error in latitude AL. This is because with increasing
latitude, the longitude corresponding to the same distance error

will be larger.
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can be clearly seen that the attitude error of the platform

undergoes large variations with different azimuth angles owing
to the lifting and landing maneuvering. However, its maximum
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value is still within the allowable range. In the linear,

constant-speed cruising stage, the variation is a periodic

oscillation.

/68

s w -i.sim v

Figure 8. The time history of attitude deviation.

Key: 1) (degree); 2) (sec).

The time history of azimuth deviation is shown in Figure 9.

It is clear that the variation of the azimuth deviation is rather

slow, with its maximum value not exceeding 0.06 degrees. If one

considers that the initial deviation is 3', then the actual

variation in the deviation is even smaller. At higher latitudes,

the variation in the deviation is slightly larger. This is also

in agreement with the general rule. On the whole, this gives a

higher accuracy than that of the output obtained by means of such

transforming elements as the sychronizer. This explains why the

strapped-down system has a smaller attitude deviation than the

platform system that outputs via electro-mechanical elements.

0 1000 2000 3000 4000 t(6)

Figure 9. The time history of azimuth deviation.

Key: 1) (degree); 2) (sec).
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Figure 10. The time history of velocity deviation.

Key: 1) (m/sec) ; 2) (sec)

Figure 10 gives the time history of velocity deviation. It

can be seen that during lifting and landing, the velocity deviation

undergoes large variations because of its dependence on the

angular rate of circling. However, its period of variation can

be calculated from the cruising stage.

V. Conclusion /69

From the above, it can been seen that the azimuth rate

inertial navigation system is better suited for vehicles that

do not undergo large pitching and rolling. The system combines

the merits of the platform-type and strapped-down-type inertial

navigation systems, and avoids certain shortcomings of each of

these systems. This type of platform has simplicity in structure

(using a small rumber of components), small volume and weight,

high reliability, and the ability to provide azimuth rate signals

of the flight instrument directional damping passage. Thus it

eliminates the need for a directional damping gyroscope, and is

capable of providing more nearly accurate flight direction signals.
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Another unique feature of the system is that calibration

and compensation can be carried out for platform drift on every

alignment. An aspect also worth taking note of is that it is

possible to achieve fast alignment, calibration and compensation

for horizontal drift by means of a leveling device or other

optical systems, making use of the known azimuth of the runway

or landmarks.

As the azimuth rate of an ordinary vehicle approximates

that of the rotation of the platform in the customary rotational

azimuth inertial navigation system, no special requirements

need to be placed on the computer of the system. Naturally, the

software system approximates that of an ordinary semi-analytical

inertial navigation system.

Finally, we would like to point out that, relatively speaking,

the disadvantage of the azimuth rate inertial navigation system is

that it is not suitable for fighters that perform special stunts.

As the platform itself does not have rotational degree of freedom

about the azimuth axle, it is not convenient to carry out dual-

position calibration and alignment, but only alignment for a

single position.
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OPTIMAL GUIDANCE LAWS FOR MISSILES WITH /71

SECOND-ORDER CHARACTERISTICS

Li Chung-ying

(Beiciiing Institute of Aeronautics and Astronautics)

ABSTRACT

The problem o' optimal intercept guidance
laws for missiles has been studied by a lot
of authors at home and abroad. [1, 3, 4, 5]
But the mathematical models for missiles were
assumed too simple, i.e., either as an ideal
particle or as a first order delay link [1].

As a primary contribution this paper has
made researches on the optimal intercept
guidance laws based on a mathematical model
with second order characteristics. By
taking minimum control energy consumption as
the performance index, the optimal intercept
guidance laws have been derived from the
minimum principle in the following two cases
of terminal state:

1. The terminal miss-distance is zero;

2. The final state is a zero-control
intercepting curved surface.

The conjugate state equations and the
state equations have been solved by use of
Laplace Transformation. Through consider-
ably complex computation, the optimal
intercept guidance laws have been deduced
in the following a.,alytical forms

1. Y'(1o)=-K( t, D. t,)(x,,+x,.f, - L cD.1,)x,.,

2. u(I.)= -K J( L . o . T. P )(Xco+ , I)LL(, o . T. P )x ,.

Through appropriate selection of the
terminal time t or the time of lead T, the
results obtaineA above may be transformed

Received in May 1981.
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into the optimal guidance laws which are
composed of the proportional navigation
with varied coefficients and the correc-
tional terms associated with acceleration
and the angular rate of change of the
line-of-sight. These results are similar
to those of missiles with first order
delay link in form and have no need of any
additional parameter. However, the com-
putation is more complex and the results
are more accurate.

Finally, the optimal intercept guidance
laws are studied in the case of the proper
frequency of a missile - approaching to
infinity, i.e., in the case of an ideal
particle. The results are the same as those
obtained by the other authors.

Notation

xI  relative position vector of missile and target
1 relative velocity vector of missile and target

x relative acceleration vector of missile and target

x4  rate of change of relative acceleration vector

u missile control vector

u optimum missile control vector

relative damping coefficient of missile

proper frequency of missile

degenerate-state vectorI

v,k Lagrange multiplier, undetermined constant vector

t0ltf initial time, final time

T time required to reach zero-control intercepting curved
surface

time between reaching the zero-control intercepting
curved surface and hitting the target
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angular velocity of the line-of-sight between missile
and target

rate of change of the angular velocity of the line-of-
sight

a,S real values chosen according to need

I. Statement of the Problem

The dynamical model of the relative motion of the missile

and the target is described by

J x=x3  x;(1~) 0) x ,

X,=X4  X8(C)=x1.

A=- lX,-L X, +Wu x.0.)= 0

The performance index is 7-

t, T
) f= ul.a df (my .Ej$ ) (u indicates transpos;tion)

-3where u!R 3 , and tf is given beforehand. Let the target set be

g (s1 t,). X,,). x,(I,)) - 0
(3)g, Cr, (I,), x.(i,). x,(I,)J 0

The problem is to find the optimum guidance laws for the

system described in (1), and guide the system from the given

initiai state (2) to the final statp (3), keepina the perfomian

index at its minimum value.

We will find the optimum guidance law for two different

target sets in the following.
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I. Minimum-Energy Guidance Laws for the Case Where the Terminal

Miss-Distance is Zero

The target set is described by

x1 (tf) = 0

The other parameters of the terminal state have no restrictions

placed on them.

Based on the maximum principle [2], we write the Hamiltonian

for the problem as

2 
(4)

where X,' X A3, X4 are the degenerate-state vectors of the

dynamical system (1).

The degenerate-state equations for the system are

A ,,( f)=
, :(t )= ;L (t )(5)

Aj, I ) -X3( t ) -,- .. ,( I

The interception conditions of the system are given by

X ,(1,) = v
X,(1,)= 0

l X3(,)= 0 (6)

.1,) - 0

On the basis of the minimum principle, the optimum guidance

laws and the corresponding degenerate-state parameters should

make the Hamiltonian function a minimum. From

H 2 0au
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we obtain

' ( t) - :>, I )(7)

From Eq. (7) one can see that, in order to obtain the

optimum guidance laws, one must find the state vector 4(t).

From the first two equations in Eq. (5) and the corresponding

boundary conditions one can obtain

X.,(t)= V

.( t )= , ,- g )

Hence, /73

- , , j )+c'?,( ) (8)

setNow, find the first derivative of the fourth equation of

Eq. n (5), and obtain

A.( I) - (t)+z.(t)

Substituting Eq. (8) into the above equation, one obtains

(9)
,( I )-2t.,i,( i )+C'.( I )= V (,- t)

from equation (7) we know that to find the rule of optimal control
we must only determine that ), (t) will work. In ecuation (9)
let

hence equation (9) becom,!m
ij, T ) + 2tco,,( T ) +co'X,( T )T (9)

then
When T = 0, t = tf and 4(0) = 0. Assume X4 (0) 0.

nonhomoqeneous
Eq. (9') is a second-order linear differential equation

with constant coefficients. Using Lagrange's transformation,
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one finds its solution to be

r 2 veO'', 2- I inQT
D -In(r1 (10)

where

C) = ' ( 1 -c')'

Subt':ting Eq. (10) into Eq. (7), one obtains the ti7.i

control law

2+'- (1
+2( t- '-" sin ) ((11- I

To completely determine the cpti7al control ,a.-, we need

to determine the constant vector v. For this purpose, we have
system mode equation set

to insert Eq. (11) into Eq. (1), and solve for the state parameters.

n f settWe obtain frm the third equation of Eq. (1)

x 3 (t) = x 4(t)

set
Substituting the fourth equation of Eq.1 (1) into the above

equation, we get

x1( t)= ,( )-2 ,( i )+ '( )

set
Now, substitute the third equation of Eq.A(1) into the above
equation, and we obtain

x,( g ) +Z2O ,( I ) +,1 ,( : )=CW' ( )

Substituting Eq. (11) into the above equation, we obtain
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Q+ (12)

22 .' 1 z-+ ( v-L), 0 s.U, - t

This is again a second-order uneven linear differential equation

with constant coefficients that can be solved by means of the

Laqranqe transformation. The final results are

"( t )0 - 1 )- )+ +

1(1 -')' e''"""sinr[QQ(,- ) + ,)

+ (13)
-- 2 + b')' ' e+ 4 ( 1 -+') '

+ 2e,' CM
(, 1 -,_ Y.), ,, "" : (, ,)+,.J1 +X36 /1 ... ( + .

In the above equation /74

• -,r2t( I -,')' "1

*tg, t, a '- J

v, , a
., t m + +4,)]

(I) + ')Q ... +,,

The above are all functions of the given parameters and of

the missile, and of the terminal time tf, and are invariant for

a given tf.

Substituting Eq. (13) into the second equation of Eq. (1)

and integrating, making use of the given initial condition, we

obtain
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x( )=Xo+ ( i - )

L'
-t s + sin (Qe +c(; + )s:Q-

-2- (14)
+ e -Le-91oI)CeS)

( ) e " + + 4-(1 (( -- )(

2)1" 4:' It- _ -/ ~ , Q(,

+,.+,. - A-,- -) + C.(,. o" t.

In the above equation

interate maing use of te cr endn inta+ oniin

We, 1 . obtat sin C
e--- -(S + 3 + 2I --

( Q+a)~'''"'m(+;~ ) 0 :(- VP) ' { ' ' t ' o s n Q t - *

(e-a (aro

+ v -- -- e'"'o sini ( (i+-to) + 49 + ) V(Q i _ )cos -

+ ) % + , 1 nQ(, I) ?.214

Substitute Eq. (14) into the first equation of Eq. (1) and
integrate, making use of the corresponding initial condition.

We obtain /75

-!I- is-0 + L + - - 0 -- i2 ,) +4 --24

.... . UN s Q + 43 + 2.) +

(15)
e't "l' ".t. "e't- (,,-I)

-4 >(0 30 V -- n Q (1, )+ 0,+ 24,) + id(] ) 2s 0 (1,- 1 + 21,j '',

-Il,.- I '* .,. t.' I + ': ' + .C6019 to, > 0
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In the above equation,

xnC , + 2, , .0 +. 2),. ]I
(a' + b)'sin Sjfl ~ ~~in + 2Q,4 + "''ce' s(c ( + 4, + 4f)

- 4 O - ):.Sifl. (t,- 4) +w0 - 2 4, + 4w;(1 -. '2 1sinl[ QQ(, - ,) + ,¢+2i.,..

- -) Q ( ) + 4,++ 24.)J

The constant vector v can be determined from x (tf ) = 0.

Sx,+x 2 ,-1 o )+ F(-(X39-)e('+ 4'+±3)
-- --- o s2LO - st" +- 0 +24, x - 3

(02 j

-- 2' e-' sin9o o-01 , + 0osQ, + 0 2 -€)

+ 4w1( 1 - ') "4 ( s (-2.-)( f

xcs(, 0 +24)+C.(t,. , , O)} (16)

Substituting the value of v into Eq. (11), we obtain

is( L )= - i, ,+-,, (i,-,)± + " I .)c-s 1,.*)

CD (Q0+- 0 +2 4 o)+ -s(O,,+2 x u- % *+z4) 4 ,t

+--(r+ ) (2 it-Q( - f)+ 24- 1 ,sinQ(1,- X i )3

(t,(i,+ )2 11 e-t-,, ,+CO+ tj , sin-20.) + 4 ,+ t ,)-I sn ( 40+2)+b ' t0(

x C(*,+ 2* .+ C ,(U,,i E, O A~i + C,(0 6, L. ()1 (17 )

Let /76
F (f,,, . W)--[, 2 (C",+1) ]'" ,x, -"TI -( (,,+ @,++ e.)h (a +2 ')- "

x e*" "CO5'W1+ '+'t

O. +, (1(,.+2 +C,(1,,,., ( t,

+C,Oft ., E)
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Under the condition that tf is given, F (tf, to, , ,) is a

constant quantity determined by the missile parameters and ,

and the time t . Thus, Eq. (17) can be simplified to

0

-'' -cx(20+ *.+2*,)+ ---- (Q:,+.+21,) xi (I- t

2t e- " 'COS Ot(- £ ) 2 - I .nt'

(0,- ) + F(1,, , (18)

The optimum guidance law at t t 0 is

2=, + -,(I, -o) + X,,-s ( -0 ) .. ' ,-

2t 0F (to,),co z (9
(0 (0i 1e0 3

+ F th t, t,(19)

Let

K(,,, ,,) W) -+ -C , sin C + (t, - ) -

S ( t, 1.)3 + F(it, ,o, E, 0))

L (b. ~, to le, )(+ 1 (, - (f , . (20

138
[e--,(s_ 0) € +,0+,, e .,r

Eq. (19) can thus be written in the simplified form
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By a proper choice of the time tf - to, we can change the
guidance law expressed by Eq. (20) into one that consists of a

proportional guidance term with variable coefficients (that is,

proportional to the angular velocity of the line-of-sight) and

a modifying term that is related to acceleration and the angular

acceleration of the line of sight. [1] /77

When w - -, the dynamic response of the missile disappears,

i.e., there is neither oscillation nor delay in the response of

the system. At this time, F(tf, to, C, u) = 0.

3
K (ij,,, L, (0)= 3i-

L (ED ° ) - 0

Therefore,

()- 3[ xl.+x.(i,-C)) (21)

which is the optimum guidance law for the instantaneous response

of the mass point. By choosing different values for tf - tot

one can obtain proportional guidance laws with different

coefficients. [3]

III. Guidance Laws for the Case Where the Final State is a

Zero-Control Intercepting Curved Surface

When the dynamic system (1) is guided towards the zero-

control intercepting curved surface L, its target set is

represented by [1, 2]:

{ xj(T)+Ix,(T)=0, 0 (22)

x3(T)= 0

Assume that the time T of entry into the zero-control inter-

cepting curved surface L has already been chosen, while the

time interval P between the time of entry into the zero-control
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intercepting curved surface and that of hitting the target is to

be determined.

x3 (T) = 0 is necessary to keep the system within the curved

surface L after it has been guided into it.

The performance index is still given by Eq. (2), and the

Hamiltonian function H of the system remains the same. Hence,

the dynamic system (1) has the same set of degenerate-state

equations as described by Eq. (5), but the interception conditions

are changed to

1.(IT) v (23)
I 3,(T)= A

.,(T) = 0

In the above, v and k are Lagrange multipliers, and are undetermined

constant vectors. Solving Eq. (5) under these boundary conditions,

we obtain

( t )= V
t()= v (T+ t

- )

,is( )=- v -(T )+,X( I)
(t )=2tcoi,( t )-&X,( t )+ v (T+ I' - )

On the basis of the results obtained in Section II, we have

X f v (T 2 + - le .2LosQ(T+ i _ - ) (24)

2V-1 -}Q(T+A+ D

Substituting X4 (t) into Eq. (7), we obtain the optimum

guidance law

().-v J(T+2- t)-- l-+We't' 2tQ(T+ 9- ) (25

+ -sin(T + -
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Substituting Eq. (25) into Eq. (1), we can solve for /78

x3 (t), x2 (t) and x1 (t) by the same procedure used in Section II.

*,( )=-v !(T+ (T+ )L +

e ' I-- ) t  n T .. 1)p - t ) - ' ] - ( a '  +  b )  1 ,e Y " '

Coe 1 _ 3inCQ(T + -

" +1 .:0J 
(26)

[T [.o ( + 0 si (Of + +--csO +,
+ +

-- e e6(¢..+ +*.)+4w'( I -,VY

x..

+ (1e 
L ( .. t

xsinCQ(T- 1A - )+,- ,- )+ -4-
4cu ( 1 -V) I (

(27

+C(T - P . , Q0 (27)

- e~ 0 ~0 -+ "O( t - 0+ 4)]Q, + ,

- '[ ( + P * + )]-[4- 4) ),)

f - I4S( 3 J I~) 4-S ~ )

ee ®(.)

xsin (T+ )2- + 4-t )+ - L' " .Si ( Q) i - t -i "4- 2 v;)

T + "1 1(2

+Q o et.... ~ ( + "_0 + C') + 41fa to- W'*'

+C1 (T+I ,L,, ,)I + (T+- l+ )i -'---+C.(T+ I f, . , ()} (28)

2 3
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Letting t = T in Eq. (28), we obtain

v 3 2 -+Ax,(T, .', to) (29)

where

xT(T)=x.,+x 4 (T -1,)+ ( T

tU) U~) .)

.X,(T u, . U)=-[Tr )T + (e.(r--p)-'-, *,-/I' - -cu si (Q T+ ,---2V) /79

( a -b,)i 2to: e "r'cos(OT + '+ oo+ 4c'(=3 -)

)Ksin(QtL L ° 2"---* 4tVJ - : J sn Q + '+ ''

++4 .ol ( 1-I- ) icvs( W4 + 0, -4- 2 , -C, ( T - ,,, Tt)"

+ Co,( T + .t D o)

Letting t T in Eq. (27), we obtain

v - + (T-to)+AX,(T, P . co (30)

where

+ ((qb + e,+?)-e-cl(T+ 3+ ) +
A..(T. , ))= (T+ P)+ _tcT-- 4) ---1sin (QT+ ,+ .)

Ws 4U:( 1

x sinQL 0+ '-'2 4w- ( 1 -. l) 1 1 sif(QP + *0+ 4)

+_ + + *.) + C. T +)
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As the system should reach the target set at t " T, the

following relation should be satisfied:

x 1 (T) + - 2 (T) = 0

From Eqs. (29) and (30), we obtain

~- 31,) ~

+I._X,(T, ( l, =, 0

from which we can solve for v.

4(T)(T -i ____'__ ____

3 T(T-1),.rl"(T-i$)+AX,(T, A, )-,) :' (T, PJ, (,3)

Substituting Eq. (31) into Eq. (25), we obtain the optimum

guidance law

,( )= -v,(T) + L ( T))"(T - ) + +
c(32

x[2t osQ (T + tA- i) ( _ I-)iis Q(T + P - f (T -3( 2

+ A (T -1)'+'(T -:)+AX(T , IL w )+ VAX,(T, A , C)O

The optimum guidance law at t = t is given by /80

0i(:)=-x:T) + ' T (T + I' ,) 2 + I _-,..

x~i,, o;r+-i,)+, ! (T-4,) + ,(T- ,)1+Ik(T - ,)T +

~ 3 (33)
+AX,(T, I* ,o)+PAX,(T, t , )"(3

The above equation can be written as

l(f,)=-KL(T," , ,+ .r+ IL (34)

-t,))-L (T , , , w)X*,

where
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xrP(.Q(T-T + (T-_1 )' + 2z(T-1 0 ) 2 -. (T-c)

+ 1

-A \',(7'. 4., c, )+'%..(T,., , w)

L, T. ' 4."0 T 0cos(,,¢ V, + ,

e" -cos(Q°-e- +2Te,-+ e cos(QT + 2 y,)

- T 3 ---10'TT
*( 3

+ AX,(T, 9, L, u))+AX(T, 9,

The tf in y l 3 a and b in all the equations of this

section should be replaced with T + p.

In the optimum guidance law given by Eq. (33) or Eq. (34),

is still not determined. Only when p is determined can one

say that the guidance law has been completely determined. For

this purpose, we make use of the condition x 3 (T) = 0. Although

we have taken x (T) = 0 into consideration while setting up

the boundary conditions for the state equations, it has not

really been used in the process of establishing the optimum

guidance law as the latter is independent of . To make sure

that the system will stay within the zero-control intercepting

curved surface after it enters this curved surface, we must

choose p such that x 3 (T) = 0. Letting t = T in Eq. (26), we

obtain

! [ ), (tw(T ) I ' '

x,(T)=- v.4- [(T~- e-sin(QT+v,)

4 w-I t
®-  e " IT . o

xcos(QT-, y,- ( sin(Qu,) )+

x + -x-e'T'vs (QT +) 0

Substituting Eq. (31) into the above equation, we obtain
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C-x*;( T) - x*(T) .N P.: T P -e - ' 4,9T- .)

,,n((.2Ll~ l ) (a' b:). 2 e'-,- I.- oo-, Q .T ')

4-(-

-4w-( I k)

S(T-
-- - ),)'- W(T- I)AX; ( T, , .,)

t

+PAX,(T. ' )) l i:ler--BQT4*t) ___- (35)

This is a high-order transcendal equation which can be solved

for by means of numerical methods. It is possible to have

several values of i that satisfy Eq. (35). In this case, the

smallest positive value of ,. should be chosen. Of course, it

is also possible that no value of j exists that satisfies

Eq. (35). This corresponds to the case where the system has

been guided to the zero-control intercepting curved surface

but cannot be kept within that curved surface. Here, guidance

toward the zero-control intercepting curved surface becomes

meaningless. From a physical standpoint, however, the equation

should have a solution because the control that causes the rela-

tive acceleration to be zero does exist.

When - , the missile loses its second-order characteris-

tics, and becomes a mass point that responds instantaneously.

At this time, KL(T, u, , ) and L L(T, u, 6, 4 of Eq. (34)

become

.JT (T Y ("- T- +T-.

LL(T. I, L, w)= 0

The optimum guidance law i(1j' becomes

x,©+x(T + P (36)'o
3 + T T-1,)'+ P 1(r. T36

3
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This is the very result obtained for guiding an instantaneously

responding mass point toward the zero-control intercepting

curved surface L. [8]

IV. Conclusion

We have obtained above the optimum guidance laws Eq. (20)

and Eq. (34) for two kinds of target sets for missiles with

second-order characteristics. These two equations are similar

in form. If we express the acceleration of the missile in

terms of the rotational angular velocity and the rate of change

of the angular velocity of the line of sight, and let

7.x. -Ox,

x" ('Z x - xo)T -t - 1- ,,, )

then both Eq. (20) and (34) can be written as [1]

ufix.,. x.,.,, o a, 13, , 0,, p) 2S

-L9xIo, (5,, a o, P j ) X 0 ___

L, x. o x,+ ,x(ax+3x,,) + KL(xO°,Xo, a, ..0', a C)

X x, -2LL(x ,, X,, a + K, , x ,,) (37 )

X 3 OX-"° +x

x T (GX 1 0  (
X -- (Xax 0+1 6,*)Ix (ax 0 + Ox2 1 )

In the above equation, w and w are the angular velocity and the

angular acceleration of the line of sight, respectively; a and B

are real numbers that can be chosen according to need.

It can be seen from Eq. (37) that, under the condition of

a specified transit time, the optimum guidance law for a missile

with second-order characteristics is made up of a proportional
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guidance with variable coefficients and a modifying term that

is related to the angular acceleration of the line of sight and

the acceleration. Although it is fairly complicated to compute

for the coefficients of this equation, these coefficients are

known functions of x10 , x2 0, a, , , -, and ii. Therefore,

armed with the advanced electronic technologies of today, one

should be able to attack the problem without much difficulty.

As the mathematical model chosen for the missile in this paper

is one step beyond that given in the listed references, the

resulting guidance laws certainly possess higher accuracies.
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AN OPTIMAL GUIDANCE LAW VIA FIRST-ORDER INERTIAL LOOP /84

Chen Hsueh-yu

(Kueichou Electro-Mechanical Design Research Institute)

ABSTRACT

An optimal guidance law which considers
dynamic factors of missile and target via first
order inertial loop in three dimensional space
is studied on the basis of the theory of
differential games. An optimal feedback guidance
law is given in vector form, and the control
rigidity parameter "k" is introduced into the
feedback gain. The "k" is a scalar with
determinate physical meaning. It represents
the response characteristics and controllability
of the system. Hence, in addition to being a
function of time the feedback gain is related
with the characteristics of the system.

Finally, several problems are discussed
in brief: first, the degeneration of the
optimal guidance law proposed is discussed
under certain conditions; then, for the
convenience of realization, a suboptimal
guidance law is given in finite rigidity
case by means of further simplification;
and also the controllability of the system
is illustrated. In addition, the case of

1 is considered in Appendix.

With the progress in numerical techniques, the extensive

use of microcomputers and microprocessors has provided

favorable conditions for the utilization of numerical simula-

tion techniques for the purpose of increasing the efficiency

of tactical missiles in battles. Hence, with respect to the

guidance system, it is desirable to obtain a better description

Received in December 1981.
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of the system by taking into consideration some factors that

affect guidance accuracy, and to achieve real-time control by

synthesizing more effective guidance rules. In other words,

the study of tactical missile guidance laws using modern

control theories is of great significance.

To go one step further in the study of guidance laws so

as to be able to more effectively intercept the targets, it is

not sufficient just to consider kinetic factors, but one must

also take into consideration the dynamical factors of the

missiles and the targets. The simplest case is where these

factors are considered simply as a first-order inertial loop,

i.e., there is a time lag T between the input of control and

the output of payload. Two cases are usually considered with

respect to the dynamics of the target, the first being that the

target moves at constant acceleration and the payload is a

constant. The second case involves an indeterminate situation

where the motion of the target is different from moment to

moment. In some cases of this type, the guidance law can be

synthesized using the theory of differential games. [1, 2, 3]

The theory of differential games is one on the study of

missile and target control via the principle of extreme values.

The problem of interception involves the control of both the

missile and the target. These have a common performance index,

but each places a different requirement on this index. Effective

interception requires that the missile control have a minimum

index, while escape capability dictates a maximum index for

target control. The problem at hand is to consider a problem

of interception in the three-dimensional space on the basis of

the theory of differential games, to assume the dynamical

factors of the missile and the target as a first-order inertial

loop, and then to synthesize the optimum guidance law for the

missile. (31
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I. The Problem

Consider the following vectorial equations of motion for

the missile and the target:

rt )- = -( I

I( ,)=a-(

.. €) - --U t -( t It ) [ . t ) = 1 _,.( t) - a. )
T T2

In the above equation, v, r and a denote the velocity, position

and acceleration vectors, respectively, of the missile or the

target. u is a control strategy, and is also a vector. The /85

subscrip" s d and m denote missile and target, respectively.

The geometrical relations among the vectors are as shown in

Figure 1.

1W

Figure 1. Geometry for intercept.

Based on Eq. (1) we can write the state equation for the

intercept system as

x(t ) =Fx. ( t )+Gu,( i ) ix. )=Fx.( i )+Gu.C t (2

In the above equation,

x ( t)=It, t ), ,( x', ( t v., i =[. ),v. ,a.j I
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"'" denotes transposition. x d (t) and x m (t) are 9-dimensional,

so that the coefficient matrices are of order 9 x 9, written

simply as

Ir 1 001

0,=-1/oIo.1 F_=r 00 1
0 0 - L 0 0 -1/

G = O ( o 0 /r,., G..=(O 0 1/t,)... .

In the above equations, when not otherwise stated, 0 and 1

denote, respectively, a 3 x 3 "zero" matrix and a unit matrix,

and T1 and T2 are, respectively, the delay time of the missile

and that of the target. We can write T2 = C-1 . In general,

E >1. Here, we take C = 1 and T2= T r. The case for

C 1 will be discussed elsewhere. In fact, the worst condition

that one can have in interception is the instantaneous control

of the target, which has a larger inertia, i.e., > 1. Hence,

by taking = 1, we have placed a stricter condition on inter-

ception, which is appropriate [Appendix III]. Futhermore, we

do not take into consideration restrictions of ud and um , and

take the performance index to be a general function of second

degree [i]:

I Cd-. r -,) j f (c-1(u-' ) - c;1(u..u.))d1 (3 )
I Lfr. r-r3]' 2 J d

In the above, b is the weighting factor of the terminal state,

while tf may be either given or not.

To obtain control of the feedback type, let ud(t) and u m(t)

satisfy

I -min max
' a(4)

Our main purpose here is to find a control strategy u d(t) of

the missile such that the miss-distance at the terminal time

tf is a minimum. Obviously, the problem described by Eqs. (2),

(3) and (4) is one of extreme-value control of the linear index

of second degree. We apply the method given in Ref. [1] to this
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II. Solution of the Problem /86

First, we define a set of vectors in terms of the relative

state variables:

,(t I (, x."t) .( t ) C, x(t)( )i

In the above, 4d(tf, t) and 4m(tf, t) are, respectively, the

basis matrix of Fd and FmI from which we define another vector:

In the above equation, A = VE. Hence, Eq. (5) can be written as

Differentiation of Eq. (6) yields

I. )=B,( t )u,( t )-B-( t )u-( 1 (8)

In the above, Bd(t) = A d(tf, t) Gd; Bm(t) = Am(tf, t)Gm  The

terminal condition is
1 0 0

S,= 0 0 0( ~(9)
-0 0 0-,.,

Z ( A,) = A C ,(f,) - i.(,)J = A (Ax),, to iAx)' = rAr. Av. .a)

From Eq. (9), we can verify that the terminal requirement

on the performance index is

1P]Z(ir[g_ A1  I , (10)2 HV ,= -As-(ArAr)= h Ar "

Now we can construct the Hamiltonian of the problem on the basis

of Eqs. (7) and (8):
H(Z.u,.u.. X, I )X-- L+ ' ( )2

2 21! 
- 1! ,I * -. ( u (11)

2 , 2 U

152



The solution of the problem should satisfy the following

necessary condition:

H(Z, X. I )=min max!! (12)
Ud N-

or satisfy the accompanying equation

A'=-H.= 0 (13)

Hence, X = a constant vector, and r"
S/2"=SZ() A r1

H.,= 0 H._- o

The problem now becomes one of solving the boundary value

problem of two points as described by Eqs. (8), (9) and (13).

From the above conditions, we obtain

u-,( t ) - c B '( t ) X t ) Uo ( ) - c B ( t ) ( t )( 1 4 )

which is the optimal solution of the problem. From Eqs. (2)

and (8) , 14 becomes

Gf=G.=G F=F.=F, B,(t)=B.(t)=B(t),

+,(I,, I )= -( i, )- 4 (it ) /87

Hence, we write Eq. (14) as

From this we know that to obtain the optimal feedback guidance

law we must first find X(t). Assume that

x()-SO)Z(t)
(16)
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and substitute Eq. (15) into Eq. (8), taking Eq. (13) into

consideration. We obtain

(16a)
t( * )=-(,-c.)B3( I )B'( i )X( I)

Integration gives

Z i )(11) -(CC-.) B( t )B'( , )SdilZ(,)

[ft z )=t)- (16b)
=[I+ (c, - c-) B)] Z Of,) = PZ(t,)

where

B = f B( f )B'( t )Sdi (17)

(17a)

P=[; +(,-.)B)..,, I is a 9 x 9 unit matrix

From Eqs. (13), (16) and (17) it is not difficult to obtain

(18)

S(

Now, we calculate B(t), B and (tf, t) separately, and find P.

As long as P is not singular, the problem will have a solution.

The basis matrix (tf, t) can be expressed as [Appendix I]

(. I ) 'exp[ f Fdf )3 e' (19)

In this equation, T = t -t. Expand eF T as +FT+ F2T 2 +
f 2!and define two simple functions

If, t T (19a)
k _ , ' Ei-I

Making use of the parameters k and E, Eq. (19) can be written,

after some rearrangement and combination, as

I I T TI(k-E) l

0", o ) .= 0 E ( 20 )
0 0 (1 -E)
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The parameter "k" introduced here is the stiffness of the control

system. In the discussions given below in Section III, we will

talk about it in detail. It can be seen from Eq. (20) that the

structure of the system is reflected by the basis matrix which

is related not only to the time, but also to the control stiff-

ness and inertia of the system. We will use the basis matrix to

compute B and P below. Substituting Eq. (20) into Eq. (8) yields

I T 1 (k -E) 0 tk -E)
B(I)=A 0 1 1E 0 (21)[ 0 0 ( I - E) . I/T -, /-r(l - E) .

Then, we can obtain the integral B [Appendix II]:

B- B( )B'( )Sdi- -('/2)'(K,+ E,) 00 = [B(
(r/2)AI(K,+E,) i Bi

In the above equation, 1%

K 1 =k'+3k1 +3k +3/2, K.=k-2 k, K3 =k'4- I

E= (E-2 k - 1 )2; E.=E', E 3=(E- k - 1)'
B = [(('/3)A 2(K, E,)3.5 , B1, = L- (t'/2)A t(K + E:)).,

B3,= [( /2)A 1 (K + E5 ))3 .,

From B, we can define the controllability matrix of the two

components in the interception

t)=cBcJ" B( t )B'( )S(t (22a)

W.(i,, t )=c.B=c. tf B( I )B'( I)SA2

Therefore, for = 1, the difference between the controllability
matrices lies only in cd and c m. In other words, one of the

d m
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We only have to substitute Eq. (22) into Eq. (17a) to obtain

the inverse of P. Let c c d - c m  Then,

1 I 0 0 1 (23)
p-,= .. , -cR., (1 .cB,,) 0

+, B. -cB,, 0 ( -cB!,)

Finally, substitute Eqs. (21) and (16) into Eq. (15) , taking

account of Ecjs. (18), (16) and (6), and we obtain the o[ti: .. i

guidance law:

u , t =-,S' t ( t) -C,B' ( i )S,P"'Z( I

3(24
c,T( k E/')' r- T.'v-T'( k - E) vj',(24

= -- I~1,'.4 + (c, ~c.)(T'/3)(

In this equation, [.] = [(k 3 + 3k 2 + 3k + 3/2) + (E - 2k - 1)2].

If we take k 3 out of [-] and keep in mind that T = Tk, then it

will be easy to see that when k - =, Eq. (27) becomes

c,(f,- t )Ar-r (,- t ) v)Uj( t ) = - i,'A+(C--c.) (,- /t (2

This is the very result given in Ref. [1] for a mass point in

three-dimensional space. We can simplify Eq. (25) one step

further. When A2 - -, i.e., the miss-distance is zero, we can

obtain, under the condition of a single passage,

3' t V o - ,( (2 5a )
u( t )=C 1 -2 C/Ca

In the above equation, V and o are, respectively, the velocity

of approach and the angular velocity of the line of sight.

3/[l - c m/c d] is the effective navigation ratio, and Eq. (25a)

is the familiar proportional guidance law.

Thus far, we have derived the optimal guidance law,

Eq. (24), and shown that when the control stiffness becomes

infinitely large, Eq. (24) degenerates to that for a mass point.
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III. Discussions

A. Proportional Guidance Law [I]

From the above, we know that Eq. (25) is obtained when

k - . Furthermore, under ideal conditions, A2 
-

J-1rf1 - 0, and Eq. (25) degenerates to a proportional guidance

law:

U:(t 1- 3 F r+ Ni'
-C,,,C"' 1 1 (26)

Note that Eq. (26) describes a three-dimensional situation. it /89

can be shown that for very small angles, the angle formed by

the line of sight can be represented by the approximate relation

T. Differentiation and substitution into Eq. (26) yields

Eq. (25a). The range for N = 3/[l - c m/c d I -s 3-6. In other

words, when cm = 0, N = 3, and when c, = 2ci N =6. This shows
m a

that the value of c d should be taken such that c < c d< 2c M
The physical interpretation of this is that the mobility of the

missile should be higher than that of the target, but not more

than twice as high. Excessively high mobility presents difficul-

ties to missile design, and is not rational.

Hence we know that the proportional guidance law is an

optimal guidance law under given conditions. Some factors have

been taken into consideration in deriving Eqs. (25) and (24),

which can therefore be considered as modifications of Eq. (25a)

in a certain sense.

B. Suboptimal Guidance Law

The suboptimal guidance law is obtained from the optimal

guidance law through certain approximations and simplifications

under given conditions. It is more convenient to realize in

practical situations. It has been mentioned above that, when
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the control stiffness is taken into consideration in the propor-

tional guidance law, the stiffness is considered as being finite

during the entire process of guidance, and the time constant of

system is taken to be relatively stable, then an approximate

guidance law can be obtained from Eq. (2-) after elimination of

the terms 1/k 2 , 1/k3 , etc. We call this the "suboptimal"

guidance law. In this case, in the denominator of Eq. (24),

[.1 k 3 [l + 7/k]. Considering that A2 i.e., zf 0, we

obtain

u,( i)= C- (kT), (k. T),C,( k,T),oA3, (27)

In the above equation

C'( k. T)r -(k-F)
L1/3( 1 - c,)(k _ 7 )T1

k = -(k -I)k
( k. T i -c c,)( k - 7

C,( k.T)= (k - 7 :,

Actually, in the process of missile guidance, k does not

vary linearly with t. This is mainly because, in the entire

air space, T is closely related to height H and Mach number M.

However, no matter how T varies, k is not equal to 0. Never-

theless, as k is always very small in the last stage of guidance,

Eq. (27) is not "suboptimal" throughout the entire process of

guidance.

C. On the Introduction of k

We introduced the parameter k into Eq. (24) in Section II,

and called it the control stiffness. k has a definite physical

meaning, and reflects the response characteristics and control-

lability of the system.

In a control system, an increase in control stiffness

produces the same effect as a decrease in inertia, both resulting
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in an increase of the natural frequencies of the system. In.

other words, with the increase in k, the bandwidth of the

system increases. It can thus be seen that k is a fairly

important parameter of the system. Besides being related to

the system time constant T s, the amplification coefficient K

and damping --, it obviously is a function of the parameters

H and M in the entire air space involved in the interception.

Hence, we can express k as k = f k1 (T ,Ks ,s t) or k = f k2 (H, M, t).

In other words, k is not a simple function of t. Therefore, it

is not reasonable to -egard -,as a constant in Eq. (24) , and

determine k as a linear function of t. In fact, except in a

very few cases, Tdepends on H and M to a great extent. Thus

we have a problem: Even though taking k as a linear function of

t simplifies the form of the guidance law, there is a definite

deviation from the actual situation. Would it be possible to

remedy this inadequacy? The answer is positive, theoretically.

The simplest method would be to regard Tr as being a linear

function of t within different height ranges, with T increasing

in value with the height. A finite number of linear i- t

relations can thus be synthesized for the different height ranges,

which can be used to modify the value of k. Such a modification

of the value of k is expected to make up for the loss resulting

from taking -r as a constant.

The introduction of k and the use of k, E and T in place /90

of the time factors t f and t has given the resulting form

clarity, simplicity and definite physical meaning, and facili-

tated the derivation and analysis. At the same time, it has

imparted a new meaning to synthesis in the application and further

study of guidance laws.

In Eq. (24) the feedback gain of the guidance law is a

function of the parameters T, k and E. This shows that the gain

is not just a function of time, but is directly related to the

system control process time and the system control stiffness.

Moreover, because T, k and E are simple functions f



t (T = t f - t; k = T/t; E 1- e-T/T) they can be easily

obtained in the order t T~ -~ k -E, no matter what form

Ttakes.

Furthermore, in studying guidance laws, the object is

usually to increase the guidance accuracy and realize real-time

control, so as to minimize control energy and terminal miss-

distance. This, of course, requires a very accurate description

of the system so that the guidance law synthesized will meet the

practical demands. The fact is, however, that synthesis would be

impossible without the introduction of some necessary simplifica-

tions of the system. For instance, if the dynamics of the

missile are described by means of a linear system of higher than

the third order, synthesis becomes very difficult. How to over-

come this difficulty is a problem yet to be solved. One attempt

could be to carry out a certain synthesis on k, based on the

physical meaning of k and taking into consideration the various

factors affecting k, and then use this k to improve the results

obtained under the assumption of a first-order system. (Note

that when complex characteristics are taken into consideration,

the synthesis of k will be very difficult.) one could thus make

up for the inadequacies that result from over-simplified

assumptions, and at the same time avoid complications associated

with the use of a high-order system. The introduction of k

further improves the problem of divergence in the terminal stage

of interception. How to synthesize the paraimn'er k requires

further study.

In summary, the introduction of the parameter k not only

has resulted in a simplification in the form of the result, but

has also given us insight into the methodological aspect of the

problem.
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D. About the Controllability Matrices Wd(tf, t) and W (tf, t)' m f'

The controllabilities of the missile and the target in the

intercept system are determined by Eqs. (22a) and (22b). The

fact that these are simplified controllability matrices can be

seen from the following transformation:

cB=cA'expFTlGG'exp(F'T3 =cA.A1,J(T (1 )CW' =c 1, (28)

In the above,

(3) = (G. FG. F''G,

I T ". T'n! 1
: T j
g;/if I ... I ..

Obviously, W is the controllability matrix of F and G, and

therefore W is also a type of controllability matrix. Bearing

in mind that B d(t) = B m(t) = B(t), we know that the relative

controllability of Wd and W is dependent on cd and c only.d m d m
Wd > Wm would mean c d > cm , which means that the controllability

of the missile is higher than that of the target. Note, however,

that cd > cm does not refer simply to the control energy, but to

the controllability matrix formed from cd, cm and B. Therefore,

improvement of controllability involves not only the selection of

cd and cm, but also taking proper account of the constraints on

the changes in the state of the system. From the standpoint of

energy consideration, both sides of the intercept system try to

achieve their goals, viz. interception or escape, with minimum

energy consumption. Hence, the weighting factors i/cd and i/dm
are required to be large. On the other hand, the requirement

of higher controllability of missile over target, for example,

demands that Wd > Wm, thus insuring the interception of the target

by the missile. However, this does not mean that one must have

W >> W In fact, an excessively large Wd results in an
d >Wm

excessively high control power and controllability reserve, which

is not necessarily advantageous for a given system index J, noting
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that we are interested in satisfying the condition of J at the

lowest cost. Hence, it is not desirable to increase the value

of W at will, which explains why in proportional navigationd
the effective navigation ratio is generally not greater than 6.

IV. Conclusion /91

In the present paper, we have synthesized the optimal

guidance law for a missile by applying the theory of differential

games to three-dimensional space, and by considering the dynamic

responses of the missile and the target as first-order inertial

characteristics. We have also introduced into the result the

concept of control stiffness. The system control stiffness k

is regarded as a parameter in the feedback gain. The gain is

thus not only a function of k , but also related to system char-

acteristics. This makes it possible for us to establish a

definite relationship among the gain and the other parameters

of the system such as T s, KtC , and even H and M, by a careful

study of k. This relationship can be used to improve the effect

of the guidance law. Therefore, the concept of k represents a

new concept in synthesis, and has simplified and clarified the

results, thus facilitating the derivation and analysis.

When k - 0, the denominator of Eq. (24) does not contain

(t f - t), and the problem of divergence in the last stage of

interception becomes less severe 12].

Finally, we have briefly discussed the problem of degeneration

of Eq. (24) , and also given the suboptimal guidance law for the

case of finite stiffness. methods foiz synthesizing k need further

studying.

We would like to thank Comrades Sung Chien and Wang Yen-tsu

for proofreading this paper and for their valuable suggestions.
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Appendix

I. Basis Matrix (tf, t)

From matrix theories, we know that when the coefficient

matrix is a constant matrix,

(Q, g)=e'"; T=i,- t Al

FT22
Making use of the expansion e = 1 + FT + -1 F 2T2 + ... , and

2!
taking into account Eq. (19a), we obtain

[ 1T F" 1

A2e"= 0 1 F1,

0 0 F1, J 0,,

In the above,

F,= 21 31 +..,F = - 21 \ / -. ,F . - -

I- -- ] ... 7" -

After rearrangement and combination, we obtain Eq. (20).

II. Finding the integral B = f B(t)B' (t)Sfdt
t

Using Eqs. (9) and (21), and performing some simple integrations,

i.e., f Edt, f ktf ft E tfk2dt and ftfkEdt, it will be
t t t t t

fairly easy to obtain B fran k aniaL

B. .rE(k-E) 0 0 B,

B " L (-E)(k-E) , B,j A3

III. The Case of F # 1

Let # 1, then 2 = t + A-1. Omitting second-order

infinitesimal quantities, we obtaint //92
x.( i )=Fx.( t )+G.u.( i )+ 0 0 a.( i )-n.(

T' A4
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Obviously, the first two terms in A4 are the state equations of

Eq. (2), and the last term is the difference arising from :# 1.

Consider the linear relation am(t) = -u (t) at t < -. Here, the
Tm

difference term is [0, 0, 1/]'Au(t) where Au(t) 2 x(t - 7)u (t).
T2 m

In other words, 1 1 is equivalent to I 1 with an increment

Au(t) of the target strategy. Therefore, the worst possible

condition for interception will be where T 2 = 0, i.e., a m(t) -

u (t). Hence, omitting Au(t) and letting C = 1 places a morem
stringent condition on interception strategy.
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DEFORMATION WORK DENSITY FRACTURE CRITERION /93

FOR COMPOSITE MATERIALS

HsUeh K'e-hsing and Chou Chin

(Aircraft Structural Mechanics Research Institute)

ABSTRACT /100

A method for predicting the fracture strength of
composite laminates with notches is an important research
topic and very useful for engineering application.

An experimental research on C/EP and G/EP composite
laminate specimens with a single notch, a centric circu-
lar hole or a sharp tipped crack was accomplished. It
is proved that the results of J-integral analysis for
isotropic materials El] are applicable to determining
the characteristic of length d of the fracturing zone

0in composite materials after taking their anisotropy intoaccount.

Based on the finite element analysis .27 of notched
composite laminates and experimental observation 3I, a
new fracture criterion for composite laminates under a
uniaxial tensile load is proposed as follows

oyd 0. O)ce(d,, 0 ) aaE,

This criterion is called the deformation work densit- r
criterion for composite laminates as the deformation work
density within a distance d from the notch is taken as a
main parameter. 0

In order to verify this model the tests for C/EP
(O;/±45"iO;/±45"/90"),and woven glass fiber/epoxy (0'/90') com-
posite laminates with a centric hole or a crack of diff-
erent sizes have been completed. The fracture strength
can be predicted by using this criterion and the charac-
teristic length d obtained from equation (11). Tables
3 and 4 show good agreement between the analytical results
and the experimental data.

Received in December 1981.
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I. FOREWORD

Although the stress fracture criteria "point stress criteria"

and "average stress criteria" '4 proposed by Whitney and Nuismer

in 1974 have been used in numerous engineering applications, the

results of extensive tests [5- performed on these criteria show

that the characteristic lengths chosen by the above said authors

do not possess adequate generality. The distribution of the maxi-

mum major elastic stress o (x,O) around the notch in a sample underY
a uniaxial tensile load is usually regarded as the basis for estab-

lishing the stress criteria. However, the uniaxial tensile stress-

strain relation of the multi-axial composite laminates that are

widely used in engineering does not retain its linearity up to the

point of fracture. Moreover, finite element analysis [27 and exper-

iments [3] that take into account the gradual extension of damage

due to the load have shown that a damage zone exists at the crack

tip. In this zone, the strain gradient has very hiqh values nepr

the point of fracture. The stress is relaxed and a very complicated

stress-strain relation holds. Such conditions have not been re-

flected in the stress fracture criteria. In addition, it has been

proposed in [41 that the characteristic lengths d and a0 are con-

stants of the material, independent of sample geometry and the dis-

tribution of stress. Yet, extensive tests have shown that the

characteristic lengths as determined from the stress criteria are

actually not constants of the material. In this paper, we do not

consider the microscopic mechanism of fracture, but establish an

engineering estimation method based on macroscopic phenomenoloy.

We seek to formulate stress criteria and a method for determininq

the characteristic lengths on the basis of an analysis of the stress

deformation field in the notch region, thereby providing a method

for predicting the fracture strength.

II. DETERMINATION OF THE CHARACTERISTIC LENGTH d OF THE
FRACTURING ZONE

On the basis of the definition and properties of the J-intoqral,

for the notched sample shown in Figure 1 that is under a uniaxial
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tensile load, the J-integral has the simplest form if the loop of

integration is allowed to close on itself via the inner surface

of the notch [61:
/2

For a given sample, , = constant. Let 0=0, w(8)=w,, and the /94

above equation simplifies to

I = ,APw (2)

where

,=2 (8)dO (3)

W, (4)

(5)

a, and co are, respectively, the stress and strain at the tip -= 0,

x = 0 of the notch. p is the radius of curvature of the notch and

n is the index of strain hardening.

Assume that the distribution of the deformation work density

along the x-axis in the vicinity of the notch in a multi-axial com-

posite laminated slab is the same as that for an isotropic slab, as

shown below [11:

,(x, o)C(X , 0)=a.C. G. bx (6)

In the above equation, b is a

constant. Please refer to [4'

for its significance and numer- *y

ical values.

Both experiments and cal-

culations indicate that the

initiation of the fracture of t
composite laminates cannot be-

determined from the fact that
a'

and have reached their cri-0 0

tical values oF and t F* Rather, Fiquro 1. The, notching!

it should be determined from the specimen.
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condition that the deformation work density o,(d. 0)i, (j. 0) at a

definite distance x = d0 from the tip of the notch has reachel its

critical value. Quantities oF and E F are the fracture stress and

fracture strain, respectively, of a smooth sample under a load

along the y direction. Substituting 7F-F for o,(d 0, O)e,(d,, 0),

in equation (6), we have

oEF=.,E( P +bd) (7)

O.o=fr(P +bd)OC, (8)

From equations (2) and (5), one can obtain

1(P)=A(P +bd,) , +

when c - 0, this gives the value J(O) of the J-integral at the

initiation of the fracture of the notched sample:

I(O)=Abdt  -f-1 +_ (10)

from which one obtains the characteristic length

do = -A -, - I ( oi

In equation (11), n, oF and EF can be obtained from uniaxial ten-

sion tests performed on the smooth sample. The value for b is

taken to be the theoretical value 8 given in [i. Only A and J(O)

remain as unknowns.

1. Determination of A. The value of A can be determined from

the results of experimental J-integral analysis [61 performed on a

sample with a single notch. We choose a composite slab made of

two materials. Material I: C/EP 10O/+45'/0;/±45"/90"), (18 layers),

approximately 2.1 mm thick. Material II: orthogonally woven qlass

fiber/epoxy (00/900), approximately 3 mm thick. The measured para-

meters of the materials along the x and y axes are listed in Table 1.

Figure 2 shows the uniaxial tension stress-strain curves for

material I along 00 (y direction), 90' (x direction) and in the direct-

ions at 10° , 200, 300, 450 and 60c with respect to the y-axis. See

Figure 1 and Table 2 for the shape and dimensions of the specimen

with a single notch.
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TABLE 1. The relevant parameters of materials of the /95
specimens _

(U g f ' M M 
)  

( k p ;, ' m m 
2 )  

( k ,f .ri r '- ) k c. f m .. , 2

4 1 6750 30:0 1692 5 0 396 66 Ii £~

*141 2300 210 ? 6 0.16 19 0 13

Key: (1) Type of material; (2) - material I; (3) Material II

I / ,
~1

~25- .7"

S- 
, . .,

10- 2

3 x 2 J w 4 5 0 ** S

Figure 2. The uniaxial ten- Figure 3. The C) - curves
sion :-c curves in different of specimen no. 5 (material I)
directions for material I

In the tests, strain gauges were attached to the specimens

along a circular arc at the root of the notch. The distribution

of strain, c (e) - 0 curves, was measured (see Figure 3). After the

anisotropy of the materials was taken into account, the distribution

of deformation work density, the w(t) - - curves (Figure 4) and the

W(e) - 0 curves (Figure 5) were obtained. Finally, numerical inte-

gration on the 1(0) - 0 curves was performed, and the value of A was

obtained from equation (3). The results of the measurements show

that the value of A is very s-able for various specimens. The averaqe

value of A for material I is 0.975, and t for material 11 is 0.93.
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/96

75 0.75

x

5 
0 0

0 20 t0 60 80 - a'

Fiqure 4. The 4()-0 curves Figure 5. The (W- curves
of specimen No. 5 (material I) of specimen No. 5 (material I)

TABLE 2. The geometry of the notched specimens

a mm) p ( m

( t f 5 40 i 2 0

6 40 20 40

3 30 5 10

(7) 10 20
9 40 10 20

10 40 20 40

1--types of material; 2--specimen no.; 3--depth of notch; 4--
radius of curvature of notch; 5--width of notch; 6--material I;
7--material II

If the values of A given in this paper are used in the desiqn stage

of a composite slab made of many multi-axial layers, the resultina

error in the calculated value of fracture strength will be very

small.

2. Determination of J(0). The value of J(O) was determined

by means of calculations performed on specimens with a centric

crack. The formula used is L71

170



( 0 c)!Y P +(-U (12)
EW 1 + c)B . -2c)

In the equation U,= Pd-, is the plastic part of the deformation

work, P is the load, B is the thickness of the specimen, c is the

half-length of the crack and W is the width of the specimen. The

geometric correction factors are taken to be the same as those for

the isotropic materials

Y=1+0.128( 'L)-0.288 ( +) 1. (13)

The value of J(0) determined from various different crack

lengths is fairly stable. The average value of J(0) for material

I is 3.8573 kgf/mm and from equation (11), do = 1.50 mm. The

average value of J(0) for material II is 3.6491 kgf/mm and d =

1.21 mm.

III. FRACTURE CRITERION

The conditions for initiation of fracture of a composite lam-

inated slab are different from those for the fracture of the entire

specimen. Near the point of fracture, the strain gradient in the

damage zone becomes very large, the stress is relaxed, the effects /97

of nonuniformity become more pronounced, and the stress-strain rela-

tion deviates from that for a smooth specimen. Actual measurements

show that the strain at the tip of the notch can reach a value that

is 1.5-3 times that of c F' On the basis of the stress deformation

field analysis performed on this region, one can assume that the

composite slab fractures when the deformation work density at a

definite distance d from the crack tip reaches a certain critical

value, i.e.,

,(da, O)E,(da, O)=aa,e, (14)

In the equation, a is a correction factor used to reflect the change

in the stress-strain relation at d before the occurrence of frac-

ture.

In the following, we analyze the composite slabs with a centric

hole or centric crack by means of equation (14).
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1. The case of a centric crack. Take the oriin o co_ -

nates to be at the center of the crack and let the 1o . '

in the v direction. The distribution of strain aln

direction is, for an anisotropic slab, aDpr-x1:Tatc1'. < .-....

following equation found in 4

V/ 1 - C

Most composite slabs made of fiber-reinforced res:-t:: -:t

materials have uniaxial tensile stress-strain curves fcir i'-

ion along a main axis of the materials that can be rearranced anT

formed into folded lines. In general, these can be written as two

straight lines

a=E ,V E<i (16a)
o= e[ --hk,( E - r) C >i (16b)

In the equations, E is the corresponding effective elastic modulus,Y
h is the ratio of the slope of the second straight section to that

of the first section and is the strain corresponding to the point

of deflection. From equation (16b) one can obtain
C =1 Iio'- (1-h )i (17)

h LE, j

Equation (14) becomes for a specimen with a centric crack,

a, c +d 0. O)c,(c -- dc. O) co'c, (18)

Substituting equations (17) and (15) into the above equation and

rearranging, one obtains
1 2_ (1- h)i

h-E( 1 -$]) h 1 =2 =a7, "  (19)
In the above equation, Solve for ,g from equation (19).
The least absolute value of the real root is the desired fracture

strength.

2. The case of a centric hole. Take the origin of coorJinates

to be at the center of the circular hole, and let the load be

applied in the y direction. The stress distribution near the h1ole

in an orthogonal aninotropic composite slab is approximately aiven

by the following expression given in F47.

0,(x, o)= t 2+('+ (R) -(- 3)[5(-) 7 (R'] (20)
S 2 X X-

x>R

172



In the equation, KT is the stress concentration coefficient for an

infinitely wide orthogonal anisotropic slab and is determined from

AT I 2- + (21)

Substituting equations (20) and (17) into equation (14) and rearrang-

ing, we obtain

1- o, Fo aa i22)

In the equation,

(_ 2 + to,+3, -(h,- 3 )(5.t'-7,!2 (23)

R 99

2 R + d0

Solve for : from equation (22). The least absolute value of theg
real root is the desired fracture strength.

IV. EXPERIMENTAL VERIFICATION OF THE FRACTURE CRITERION

In order to test the applicability of the present :racture

criterion, we performed some experiments on specimens prepared from

material I and material II that contained centric cracks or cent -c

holes. The cracks were produced by means of ultrasonic waves, wbile

the centric holes were prepared by means of an ordinary drillinc

machine. Tables 3 and 4 gives the experimental values anc the ca.:-

ated values,as well as related parameters. The value of a was exoer-

imentally determined. For the centric crack specimens, it is 0.5

for both kinds of materials. For the centric hole specimens, t =

0.8 for material I and a = 1 for material II. The results seem to

depend on the sensitivity of the material to the process of drillinq.

For the same material, the same value of d is used for both the

centric crack specimens and the centric hole specimens. It is appar-

ent that there is a good agreement between the test results and the

calculated values.
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TABLE 3. Comparison between computational and test results
of centric crack specimens

'2- M P I#4 ft M4 B MM) 00p4 MM a O(kgf mm2)r I , I " *I 811"m ) 81~ m 2C rm,

-1 39 94 21 8 9 27 2 30 64

t11 1 2 40 12 2.16 ;6 0 22 ! 23.54

a 3 34 82 2 14 16 5 22 04 20 95

L 1 64 0 2 08 23 8 1 35 10 8!

L- 2 64 :75 2 053 31 93 9 -- 9.49

L 3 64 175 2 075 8 o 0- 7- 15 90

I E 4 1 5 2 075 1 0 .r 12.57

L 5 4 0 2 rQ7 11 98 13 E j 13 26

L-6 32 025 7 073 8 10 1 7 15 32

L-7 16 G25 2 08 4 0 192 16 62

TABLE 4. Comparison between computational and test res-:-
of centric hole specimens

2_ _'. 2 -I fm:l cm(kef mml)

d -1 3 2 1 e, 32 60 3C 16

6-2 4L 2 20 Q 2 3C 93 30 19

d- 3 2 2 5I 6 27 £7 27 24

K . 7 4 o- 0 21 73

K 2 - e 20 F9 19 25

- 1', 0 .7.39 17.19

K 4 A 2 I -. 64 1s 0

K ' -: _- '5 P2 12 47

K 6 3 .2 722 19147

K 7 ,-0 :76 14 98

K - A2405 32230 12 79 108as

1--type of material; 2--specimen no.; 3--width of specimen;
4--thickness of specimen; 5--lensth of crack; 6 - -a t

7--,experimental; 8--material I; 9--material II

V. CONCLUSION AND DISCUSSION

A method for predicting the fracture strength of notched fiber /99

composite laminated slabs is a research topic that has received

much attention in recent years and has a great significance in

engineering applications.
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In this paper, the results of J-integral analysis 1 for the

stress deformation field in the notch region of an isotropic slab

are applied to fiber-reinforced resinous composite laminated slabs

whose anisotropy has been taken into account. From this the char-

acteristic length d of the fracturing zone is obtained. We believe
0

this is a more reasonable approach for obtaining d 0.

Based on the finite element analysis of C/EP composite laminates

2- and experimental observations, we have proposed a new fracture

criterion that takes as a main parameter the deformation work den-

sity within a distance d from the tip of the crack.

Tests on C/EP and G/EP composite laminates have shown that the

method presented in this paper meets engineering requirements. We

have been able to successfully predict the fracture strength of

centric crack specimens and centric hole specimens made from the

same materials, using the value of d Our method is apparently
0*

more reasonable than the "point stress criterion" and the "average
stress criterion" used abroad.

Even though we have taken the anisotropy of the materials into

account when we applied the results of J-integral analysis for iso-

tropic slabs to composite laminated slabs, the method is neverthe-

less an approximation. However, our experimental values agree satis-

factorily with the calculated values, and the method is very conven-

ient to use because it eliminates the need for a complex microscopic

analysis of the notch region.

The use of the J-integral method for fracture analysis on com-

posite laminated slabs has been found elsewhere in the literature.

For example, see [8].

Part of the experimental work involved in this study was com-

pleted by Comrades Chung Yu and Chiao K'un-fang. This paper was

reviewed by Ts'ai Ch'i-kung, a committee member of the Academic

Committee of Academia Sinica, and Associate Professor Yang Ping-hsien

of Peiching Institute of Aeronautics. We would like to thank them
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for their encouragement.
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NUMERICAL CALCULATION OF LOCAL CONVECTIVE HEAT TRA-NSFEP

COEFFICIENTS OVER AIR-COOLED VANE SURFACES

Ling Chun-hsiao and Chin Te-nien

CCh'inghua University)

ABS TRACT

An iterative method for solving two-dimensional
compressible boundary layer equations and steady state
equations of heat conduction simultaneously is presented
and also a FORTRAN program for calculation of the local
convective heat transfer coefficients over air-cooled
vane surface by means of this method is provided 111. The
approximate integral method is used for solving bound-
ary layer equations and the finite element method is
applied to calculating the steady temperature field of
the blade.

The input of the program consists of geometry of the
blade, pressure or velocity distribution of gas flow
external to the boundary layer, entrance flow conditions,
internal cooling conditions, nodal numbers and coordi-
nates of the elements. The output includes all princi-
pal boundary layer parameters, such as heat transfer
coefficients and temperature distribution on the surface
and temperature distribution inside the blade. A numner-
ical example has been calculated and the results are
favorable compared with the theoretical and experimental
data given by other authors.

I. INTRODUCTION /101

At present, the various methods for determining the heat trans-

fer coefficients over vane surfaces can be divided into three groups,

viz, empirical formulae [2], experimental determination [31 and numer-

ical methods [1], [4], [51. The numerical methods consist of solv-

ing the boundary layer equations numerically and determining the

distribution of the heat transfer coefficients over the vane sur-

faces. During the past 10 years or so, there has been a lot of work

Received in October, 1981.
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done abroad in this area and many programs for calculation have

been published. (At present, not much has been done in this area

in our country). To solve the boundary layer equations, it is

required to use as boundary conditions the temperature distribution

or enthalpy distribution over the vane surfaces. As these distri-

butions are not known beforehand, some authors simply assume a con-

stant wall temperature. (The surface temperature is usually taken

to be that of the total temperature of the oncoming stream, as in

[1]). others have made corrections on the constant wall temperature

assumption on the basis of empirical data. In this paper, we present

an iterative method for solving simultaneously the boundary layer

equations and the steady state equations of heat conduction which

have a common boundary. This not only overcomes the difficulty

associated with the indetermination of the wall temperature, but

also enables one to simultaneously obtain the temperature distribu-

tion over the vane surfaces.

II. BASIC CONCEPT OF THE ITERATIVE IMETHOD

The temperature over the vane surfaces is usually unknown.

Actually, it is not a constant, but a function of the heat transfer

between the inner and outer boundary layers as well as the heat

conduction of the vane and other factors. Hence, it is necessary

to solve the inner and outer boundary layer equations and the heat

conduction equations simultaneously in order to simultaneously

determine the heat transfer coefficients of the inner and outer

surfaces as well as the temperature distribution inside the vane.

To simplify matters, we assume that the cooling condition inside

the vane is known and use this as a boundary condition for solving

the outer boundary layer equations and the vane heat conduction

equations simultaneously.

The general form of the two-dimensional compressible boundary

layer equations is [4]
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(PU) + - -(Pv+PU ) 0 (2-1)
x y

7, y 1102

ST,, . o~T,

Figure 1. Sketch map for the fundamentals of the
iterative method

As shown in Figure 1, (x. Y) AP and AS, and are orthoqonal

coordinates. u and v are the x and y components of velocity respect-

ively. p, h, 1, E, k and c are respectively the local mass density,P
static enthalpy, dynamic viscosity coefficient, turbulent viscosity,

heat conduction coefficient of the gas and specific heat under con-

stant pressure. P0 ,T0 and M are the total pressure, total tempera-

ture and Mach number of the oncoming stream, respectively.
"", 'e'.-', owl denote, respectively, the pulsation of the tur-

bulent flow, the outer edge of the boundary layer, average value and

value at the wall surface.

The boundary conditions for equations (2-1) to (2-3) are

u(x, O)=O (2-4)

v(x, 0)=0 (2-5)

lim u(x, Y)=u.(x)(y -.., (2-6)

h(.x, O)=h.(x) orT(x, 0)=T.,(-)
(2-7)

However, hw (x) or Tw (x) in equation (2-7) are not known beforehand,

but can only be found from the simultaneous solution of the bound-

ary layer equations and the heat conduction equations for the region

B.
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Assume that the material properties of the vane are constant;

then the two-dimensional steady stn'te heat conduction equations are

(please refer to Figure 1):

a:7 a1T(2 8~---+ I-~ = 0 (x y(B)(-8

-X dT = a,(T -T.) (x, y(F,) (-0
an ( - 0

In the above, x and y are rectangular coordinates, T is the

temperature, X is the thermal conductivity of the material of the

vane and a 9 , T 9and a , T care, respectively, the heat transfer

coefficient and the temperature of the gas flow on the outer surface

of the blade and in the cooling passage, respectively.

a 9and T 9are also unknown, but can be found from the simul-

taneous solution of the heat conduction equations and the boundary

layer equations (2-1) to (2-3) . Hence, we can assume a random value

for TC x) (usually assumed to be T 0) and use this in the boundary

condition given in equation (2-7) to solve for the heat transfer

coefficients a Wx and T Wx on the surfaces of the blade back and

blade basin from their respective boundary layer equations. These

are then used in the boundary condition given in equation (2-9) to

solve equation (2-8) for the temperature field inside the blade.

Now the new temperature distributions T w(x) on the surfaces of the

blade back and blade basin are used in the boundary condition given

by equation (2-7) to again solve the boundary layer equations for the

blade back and blade basin. This process is repeated until two

successive heat transfer coefficients thus obtained have the required

degree of accuracy.

III. SOLUTION OF THE BOUNDARY LAYER EQUATIONS 103

Basically, the computer program given in [1ll was used to solve

the boundary layer equations in this study, except that we corrected
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some mistakes in the original program and made some modifications.

Two examples calculated by means of the canonical methods given in

_6 , '7 and [8] have results that agree completely with those in

IV. CALCULATION OF THE TEMPERATURE FIELD OF THE VANE

To determine the temperature distribution over the surface of

the vane, it is necessary to calculate the steady state temperature

field of the blade which is the same as solving the two-dimensional

heat conduction equation, equation (2-8), that satisfies the bound-

ary condition of the third type, equation (2-9). As the solution

region G has a fairly complex shape, we make use of the finite ele-

ment analysis [9], [101. Finding the solution to equation (2-8)

that satisfies equation (2-9) by the variational principle is equi-

valent to solving for the extreme values of the following general

equation:

(T=Io_ + ( ,T~ )I ]dxdy+ f ,( -fTd (4-1)
G

In the above, a = cg or ac, f = a T or .x T . In order toggg cc"

obtain a better fit for the boundary of the curve, we use 8-node

isoparametric elements with curved sides. The 8-nodes of the element

e are, in order, (xiyi), i=1,2 ........,8. The temperature at any

point can be expressed in terms of an interpolated value of the form

function N. ( ,n) as follows:1

7(x, y). N,(L, 11)T
i-1

In the above, Ti is the temperature of the ith node. It can

be deduced that the necessary condition for obtaining the minimum

value of the general function I(T) is

I (h;; + g ) T, P.o (4-3)
! 1

in which
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d- -; " " dxdy (4-4)
h.=ff~ ~ X~f~~ *')xd (4-5

= aNNds (-5)

Pi= Nids (4-6)

Thus, we arrive at a set of linear algebraic equations that

contain n unknowns T (i=1,2 .......,n), and whose coefficient matrix
1

possesses the properties of symmetry, orthogonality and being band-

shaped. In our program, we adopt the trigonometric method of Gauss-

Doolitte for finding the solution. Equations (4-4), (4-5) and

(4-6) are calculated by means of Gaussian integrals. 3 x 3 Gaussian

points are used for the integral in equation (4-4). This is the

best approach for solving two-dimensional problems [10]. To achieve

uniformity over the entire program, we use three Gaussian points for

both equation (4-5) and equation (4-6). When doing numerical inte-

gration, the approximate values of a and f corresponding to the

Gaussian points are found by a three-point parabolic interpolation.

(1 denotes the boundary of the element e).

During the stage of proqram test run, we tested the part of the

program that solves for the temperature field, using as computational

examples a flat slab and cylindrical walls with boundary conditions

of the third type. The results show that the calculated values

obtained from the 7)-,t of the program using the finite elements agree

completely with the rresponding analytical solutions, with maximum

error not exceeding 0.05%. This shows that this part of the program

is completely reliable.

Next, based on the fundamental concepts presented in Section II,

we wrote an iterative program for solving the boundary layer equa-

tions and the heat conduction equations simultaneously. We did some /104

actual computations using as an example the blade shape and related

data given in '31. The calculated results and a comparison with

other data are shown in Figures 2 and 3 (curve 5 of Figure 3 is taken

from [3]).
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30
00 N 20 0 40 6 0 10 lO6

z/c(*)

Figure 2. Comparison of the calculated temperature
distribution over air-cooled vane surface with the results
measured by A. B. Turner [3].

1--the calculated results in this paper; 2--the experimental results
given in [3].

/s 4
1000

750/

s250 - ~ Y~ I
blade asi de

' ' ' , , I .1 I100 80 60 40 20 0 20 40 60 80 1o

Z/c(%)

Figure 3. Comparison of the calculated heat transfer
coefficients over air-cooled vane surface with the
other data.

1--the calculated r sults in this paper; 2--the calculated results
according to [1] (assume T (x)=constant); 3--the experimental
results given in [3]; 4--the calculated results according to
turbulent flat plate law, Nu =0.0292Re °0 'Pr 1 / 3; 5--the results
according to the theory of Spalding an Patankar.

It can be seen from Figure 2 that there is a fairly good agree-

ment between the temperature distribution over the blade surface

obtained from our iterative calculation and the experimental results

given in [3]. Not only do the two curves have the same trend of

variations, but also the maximum discrepancy does not exceed 4%.
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it --n be seen from Figure 3 that the heat transfer coeffjci:<.ts

..... v.... sirfaces calculated by means of our iterative met r:.  i

i:.-s to the results of calculation based on the turbulent fit

,IA. in one region, while in another reuion, it aurees better
.X>2 rimental results given in 3. In the first 40. char_:

.11"n of the blade basin, our results show a great deal of

. m over those calculated frcm the assumption of constant

.."..r.at re given in '1 In addition, the value of the heat

t: i.-v '*,, .oefficient of the front nodal point as calculated by means

t:'>h pro]ram aiven in I1 always comes out to be zero. This is /105

oh'~slv not acceptable. In our program, we used the heat transfer

orm-ula for cylindrical diffracted flow (Nuj=1.14Rt PFr' , where d

ciunotes the diameter of the head section of the blade) to calculate

the heat transfer coefficient of the front nodal point. The results

thus obtained agree very well with those obtained experimentally.

Furthermore, no mention was made in -i1 of the effect of the degree

of turbulence of the main stream on the development of the boundary

layer. We performed calculations using the experimental data pro-

vided by -3 for different degrees of turbulence. Our results show

that the pzogram presented in rl- is applicable for cases with a high

degree of main stream turbulence. One should keep this in mind when

using this procram. The example given in this paper was calculated

and compared on the basis of the data given in Figures 10 and 11 of

3- for a 5.9% main stream turbulence. See -11' for a detailed

account of the computed example and the program.
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A BRIEFING ON THE CONFEPNCE O NEW

TECHNOLOGIES IN CHEMICAL ANALYSIS

The Chinese Society of A,erTrona icics and,: Astrona-tics snonsG r x

a conference on new technologies in chemical analsis that oic ;

in Shenvanq from June 1-5, 1982. The meotinci was nianne ann ore-

pared by the Physical and Chemical Properties Testina Team o; tne

Committee on -Materials. 58 nauers were received in all, 34 of w,

were either delivered as special topic reports or rea' in cn, of the

large or small meeting rooms. The subjects included chem.ica: ana!-

ysis techniclues in the areas of atomic absor!-rtion snectrn. hototrv,

ion-selecting electrodes and three-component polymers.

Throuch this information exchance, the achievements made In

recent years in new chemical analysis techninues have been ren ewe::,

and the attendant scientists obtained a better understan cna of the

development of chemical analysis techniques at home and ah--oad a-.

its importance in the entire domain of scientific technolrcv a7,'. 1-

the ievelopment of the econcm': of the --eonc..

Besides the exchan-e of academic information, the conference also

included small-scale panel discussions on the subject of future

development of chemical analysis. It was pointed out that this

development should be such as to improve speed, reduce the reauirec

sample quantity and reduce pollution of the environment. T'uture con-

ferences should as much as possible be specialized. frenuent and with

variety. Short training courses should be offered whet- necessary to

enhance the understanding and application of certain new techni-ues.

Tie scientists who attended the mpetin7 aained a lot from the

absorbingly interestinq discussicns and the enthusiasm shown. The

team conducting the meeting discussed and aareed that tho next ce.-

ference should be held in 198A.
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CHINESE SOCIETY OF AERONAUTICS AND ASTRONAUTICS HOLDS INAUGURAL

MEETING FOR COMMITTEE ON FLIGHT MECHANICS AND FLIGHT TESTS /107

The Chinese Society of Aeronautics and Astronautics held an

inaugural meeting for its Commitee on Flight Mechanics and Flight

Tests in Kuangchou from August 13-17, 1982. 140 professors, spec-

ialists and engineers came as representatives of 48 scientific

research, design, production and instruction departments. There were

11 committee members present at the meeting.

An academic information exchange meeting was held alongside the

inaugural meeting. 80 papers were received in all. Two of the papers

were read during the general meeting, while the rest were discussed

in one of three groups, viz., flight quality research on aircraft
carrying automatons, flight quality research on aircraft flying

under the conditions of atmospheric turbulence, large angle of-attack,

large side-glide angle or asy-metrical power and the fabrication, use

and data manipulation of test instruments for flight tests. The

papers related theory to practice, and were in accordance with the

standards set for the flight quality of our military aircraft. Some

of the papers given by some younger members of certain research or

design institutes were received with enthusiasm. Chang Tsu-yen's

"Computation and Analysis of Different Choices of Automaton for a

High-Altitude High-Speed Attack Aircraft", Po Chao-kuey's "A Calcul-

ation of the Dynamic Response of a Big Transport to Atmospheric

Turbulence" and Chiang Hsing-wei's "Breakdown Tests on Machines

Working under Normal Conditions--An Application of the Inverse

Spectrum" were among those with richer contents and definite practical

values. Everybody felt this was a good sign.

During the meeting, the first meeting of the committee was also

held. Discussions were held and corresponding decisions were made

regarding the special study group formed under the committee and the

academic activities to be engaged in during the next year.
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CHINESE SOCIETY OF AERONAUTICS AND ASTRONAUTICS, CHINESE SOCIETY /108

OF MECHANICS AND CHINESE SOCIETY OF SPACE NAVIGATION JOINTLY HELD

THE SECOND NATIONAL CONFERENCE ON COMPOSITE MATERIALS

The second National Conference on Composite Materials held

jointly by the Chinese Society of Aeronautics and Astronautics, the

Chinese Society of Mechanics and the Chinese Society of Space Naviga-

tion took place in Harbin from August 18-22, 1982. 265 representatives

from 97 departments of the various scienc research institutes, fac-

tories and colleges all over the nation attended. The Chinese Society

Association, the National Defense Science and Industry Committee and

the National Science Committee put much emphasis on this meeting and

sent their representatives to attend and speak at the meeting.

230 papers were received. These were either circulated or read

during one of the sessions. Based on the contents of these papers,

four special topic groups were formed: resin-based composite materials

and industrial arts, hull and optimizing design, fracture fatigue pro-

perties and metal-based composite materials. Through this exchange

*1 of information, a better idea was obtained of the rapid development

of advanced composite materials in our country during the past two

years. The papers received were superior to those received for the

first National Conference on Comoosite Materials. However, these

works were still in the stage of theoretical study and scientific

experimentation. Much remains to be done in the area of practical

application. To achieve this, the representatives pointed out that

theoretical research and scientific experimentation should be com-

bined with practical applications without putting too much emphasis

on either of these. The following were deemed important: stabil-

ity of material properties, composite industrial arts, substrate

design, structural analysis and design, connection design and mater-

ials industrial arts, effects on and protection of the environment,

quality control and non-destructive testing techniques, machine pro-

cessing and cost reduction, etc.
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Some special topic discussions were also held during the

conference. Arrangements were made for the attendant representa-

tives to visit the "dolphin" helicopter.

I
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